Геоданные VS медицина. На чем строить ГИС анализ в здравоохранении в 2025 году?
Работа с геоданными имеет определенные сложности. Но когда ты приходишь работать в медицину, этих сложностей становится больше 10 раз.
Как меняется рынок и зачем нужны конференции по Ai
Привет, Хабр! Меня зовут Роман Поборчий, я член программного комитета AiConf Х, которая пройдет 26 сентября 2025 в Москве. Много лет занимался сбором и организацией разметки данных для машинного обучения — и с каждым годом убеждаюсь, что реальность всегда сложнее любых представлений о ней. Поэтому и конференции, на которых можно обсудить практические кейсы, современные подходы и новые вызовы особенно ценны для индустрии.
Обработка геоданных для ML-задач. Часть 2: пространственные объединения и расстояния
Эта статья продолжает наше обсуждение пространственных признаков в Python. Вы можете прочитать первую часть текста здесь
Машинное обучение в страховании: как ИИ и большие данные меняют подходы к оценке рисков и борьбе с мошенничеством
Привет, Хабр!Меня зовут Дмитрий, я дата-сайентист в команде моделирования Росгосстраха. Страховые компании активно обращаются к технологиям машинного обучения (ML) и искусственного интеллекта (ИИ) для формирования тарифов, борьбы с мошенничеством, оптимизации различных процессов и улучшения качества обслуживания клиентов. В этом обзоре я хочу рассказать о том, как ML/ИИ трансформирует процессы в страховом секторе. Посмотрим, как технологии интегрируются в повседневную работу крупной страховой компании на примере нескольких характерных задач. Машинное обучение в страховой отрасли
Геопространственная обработка признаков
Привет, я Александр Мещеряков, более 3-х лет работаю в компании «Синимекс» специалистом по анализу данных. Мне удалось поработать с различными ML-проектами, и больше всего меня увлекла работа с геоданными. Для многих эта тема кажется немного «магией» и я хотел бы на страницах Хабра пролить на нее немного света.

