feature store.

Как мы ускорили заливку данных в YDB в 40 раз

Привет! С вами Кабанов Олег — ведущий ML-инженер Flocktory.В этой статье расскажу об опыте внедрения YDB в качестве хранилища для ML Online Feature Store. А также о том, как нам удалось ускорить загрузку данных в 40 раз и убрать влияние на скорость чтения данных при обновлении.

продолжить чтение

Как автоматизировать обучение ML-моделей и сократить время вывода в прод до двух дней

В прошлой статье мы говорили о подходе к рекомендации сервисов на основании автоматизации расчета склонностей клиентов и единого репозитория предложений. В ней мы углубились в создание репозитория, описание логики категоризации и набора в кампании для коммуникации с клиентами. Сегодня мы подробнее расскажем про наш подход к автоматизации построения и вывода в прод набора моделей.Как мы выбирали модельОдной из задач, которые мы решали — сохранение продаж при уменьшении числа коммуникации. Решили общаться только с теми абонентами, для которых продукт релевантен.

продолжить чтение

MVP по «умному» поиску данных

Всем привет, меня зовут Александр, я аналитик в Альфа-Банке. Совместно с командой мы разрабатываем и развиваем платформу для дата-инженеров (DE) и дата-саентистов (DS), именуемую Feature Store. Она даёт возможность коллегам работать с большими данными и упрощает бюрократию жизненного цикла создания ETL и ввода моделей в промышленную эксплуатацию.Но хотелось бы улучшить процесс по поиску данных в ней, так как объёмы информации стремительно растут.

продолжить чтение

Переходим от legacy к построению Feature Store

Невероятная история о том, как внедрить систему Feature Store в проект с огромным legacy и получить профит.Привет, Хабр! Меня зовут Евгений Дащенко, я из компании Домклик, которая решает все вопросы, связанные с недвижимостью, включая оценку стоимости недвижимости любого типа. Это статья по мотивам моего доклада на конференции Highload++ про интерфейс между данными и ML-моделями Feature Store: как мы сделали его с нашей командой, каких результатов добились и с какими подводными камнями столкнулись на пути.

продолжить чтение

Проектируем собственную inhouse Feature Platform

Всем хорошего дня! На связи с вами Домклик #MLOps, и эта статья будет полезна тем, кто интересуется построением внутренней платформы. Меня зовут Алина Баймашева, я руководитель разработки ML-команд, недавно выступила с докладом на конференции HighLoad++ 2024, а теперь подготовила статью по мотивам доклада. Поэтому если вы пропустили доклад, то можно почитать статью. В ней отражены как общие концепции построения подобных платформ, так и возможности практического применения.

продолжить чтение

Rambler's Top100