классификация.

Как аналитики Авито с помощью ML помогают людям выбирать хорошие авто с пробегом

Привет! Меня зовут Илья Комутков, я старший аналитик в Автотеке — сервисе по проверке истории автомобилей с пробегом. В статье расскажу, как мы улучшаем проверку машин и создаём алгоритм рекомендаций по дальнейшим действиям для покупателей. Текст будет интересен начинающим или middle-аналитикам, которые уже умеют работать с SQL, python, ML, но ещё не решали многоэтапные задачи, влияющие на бизнес, и ищут способы применить свои навыки в работе.

продолжить чтение

Часть 2. Комплексное решение на практике: система «Джинн»

Комплексное решение на практике: система «Джинн»Данная работа подготовлена командой Infolabs

продолжить чтение

MVP по «умному» поиску данных

Всем привет, меня зовут Александр, я аналитик в Альфа-Банке. Совместно с командой мы разрабатываем и развиваем платформу для дата-инженеров (DE) и дата-саентистов (DS), именуемую Feature Store. Она даёт возможность коллегам работать с большими данными и упрощает бюрократию жизненного цикла создания ETL и ввода моделей в промышленную эксплуатацию.Но хотелось бы улучшить процесс по поиску данных в ней, так как объёмы информации стремительно растут.

продолжить чтение

Нейросети без градиентов: спектральное моделирование и построение решений

ВведениеСовременные искусственные нейронные сети демонстрируют впечатляющие результаты — от классификации изображений до генерации текста. Но несмотря на повсеместное использование, суть их работы остаётся для многих скорее метафорой, чем алгоритмом.Мы привыкли к терминологии: веса определяют вклад входа, нейроны применяют нелинейные функции, глубина сети увеличивает выразительность модели

продолжить чтение

Scikit-learn теперь умеет в пайплайны: что изменилось и как работать с библиотекой в 2025 году

Scikit-learn — это одна из основных Python-библиотек для машинного обучения. Её подключают в прикладных проектах, AutoML-системах и учебных курсах — как базовый инструмент для работы с моделями. Даже если вы давно пишете на PyTorch или CatBoost, в задачах с табличными данными, скорее всего, всё ещё вызываете fit, predict, score — через sklearn.В 2025 году в библиотеку добавили несколько важных обновлений: доработали работу с пайплайнами, подключили полную поддержку pandas API, упростили контроль за экспериментами.

продолжить чтение

Гайд по Scikit-learn в 2025: собираем пайплайн, который не сломается

Scikit-learn — это одна из основных Python-библиотек для машинного обучения. Её подключают в прикладных проектах, AutoML-системах и учебных курсах — как базовый инструмент для работы с моделями. Даже если вы давно пишете на PyTorch или CatBoost, в задачах с табличными данными, скорее всего, всё ещё вызываете fit, predict, score — через sklearn.В 2025 году в библиотеку добавили несколько важных обновлений: доработали работу с пайплайнами, подключили полную поддержку pandas API, упростили контроль за экспериментами.

продолжить чтение

Бинарная классификация одним простым искусственным нейроном. Часть 3

В предыдущих частях (первая, вторая) описан мой опыт обучения простого искусственного нейрона бинарной классификации и размышления об этом. В этой статье я продолжаю размышления и вношу соответствующие корректировки в код. В предыдущей версии мне не нравится, что в процедуре обучения есть оператор сравнения if. Он применяется, когда вывод сравнивается с меткой класса (if not compare(x,y):), и если вывод и метка класса не равны, то происходит коррекция веса. Мне хочется "более чистой" математики и не применять операторы сравнения, если этого можно избежать..

продолжить чтение

Бинарная классификация одним простым искусственным нейроном. 2 часть

СомненияВ предыдущей статье я описал свой опыт обучения искусственного нейрона бинарной классификации и некоторые выявленные при этом особенности. Одной из выявленных особенностей была "обратная аномалия" - ситуация, при которой все объекты становились ошибочно классифицированными, а также ситуация, при которой коррекция весов приводила к увеличению количества ошибочно классифицированных объектов.

продолжить чтение

Бинарная классификация одним простым искусственным нейроном. Личный опыт

Оказывается, всего одного простого искусственного нейрона достаточно, чтобы провести бинарную классификацию линейно-разделимого множества объектов. Исходные данныеВозьмем учебное множество "жуков" и "гусениц"

продолжить чтение

Как банки предсказывают кредитные риски: опыт создания PD-моделей из ФинТеха

Представьте, что вы управляете кредитным портфелем банка: каждый выданный кредит – это ставка на то, что клиент выполнит свои обязательства. Как понять, кто из заемщиков надежен, а кто может не справиться с платежами? Здесь на помощь приходят Probability of Default (PD) модели.PD-модели – это инструменты, используемые в банковском секторе для оценки вероятности дефолта заемщика в течение определенного периода времени. Они играют важную роль в управлении рисками и кредитной политике банка.

продолжить чтение

Rambler's Top100