automl.

Автоматизируем машинное обучение с помощью ИИ-агентов

Решая соревнования на Kaggle начинаешь замечать паттерн. Baseline сделать просто: загрузить данные, запустить CatBoost или LightGBM, получить baseline метрику. Это занимает полчаса. Но чтобы попасть в топ решений, нужно перепробовать десятки вариантов препроцессинга, сотни комбинаций фичей и тысячи наборов гиперпараметров.

продолжить чтение

Как LLM помогают ученым

Всем привет! Меня зовут Николай Никитин, я руковожу лабораторией автоматического машинного обучения в Институте ИИ ИТМО. Сегодня я бы хотел сделать небольшой экскурс в то, как методы и модели ИИ позволяют автоматизировать решение прикладных задачам в разных областях науки.Нейросети уже достигли впечатляющих результатов ― вспомним хотя бы нобелевскую премию по химии прошлого года, выданную за методы фолдинга белков, проработанные с участием AlphaFold. И различные полезные для ученых решения, появляются каждый день во многих областях.

продолжить чтение

Библиотека OutboxML от Страхового Дома ВСК

Хабр, привет! Меня зовут Семён Семёнов, я руковожу Data Science и Machine Learning в Страховом Доме ВСК. В этой статье расскажу, как мы создали систему автоматического обучения и развёртывания моделей машинного обучения с открытым исходным кодом.

продолжить чтение

MOEX_AutoML VS ИИ (LLM)

Специализация всё ещё ключевой фактор точности прогноза? Всем привет! Меня зовут Андрей Бугаенко,  и в этой статье я расскажу, почему мы в Московской бирже считаем, что AutoML-подход, основанный на интеллектуальном выборе моделей и признаков (на примере MOEX_AutoML), эффективнее современных LLM в задачах численного прогнозирования.

продолжить чтение

Как автоматизировать обучение ML-моделей и сократить время вывода в прод до двух дней

В прошлой статье мы говорили о подходе к рекомендации сервисов на основании автоматизации расчета склонностей клиентов и единого репозитория предложений. В ней мы углубились в создание репозитория, описание логики категоризации и набора в кампании для коммуникации с клиентами. Сегодня мы подробнее расскажем про наш подход к автоматизации построения и вывода в прод набора моделей.Как мы выбирали модельОдной из задач, которые мы решали — сохранение продаж при уменьшении числа коммуникации. Решили общаться только с теми абонентами, для которых продукт релевантен.

продолжить чтение

Как мы в Авито предсказываем категории объявлений по описанию

Привет! Меня зовут Руслан Гилязев, я работаю в подразделении DS SWAT в Авито, руковожу командой платформы Item2param. Одна из моих задач — развивать модели, которые предсказывают параметры объявлений. В этой статье расскажу, с помощью каких технологий мы решаем задачу классификации объявлений и почему это важно для бизнеса. Материал будет полезен DS-инженерам любого грейда и backend-инженерам, которые интересуются темой Data Science. 

продолжить чтение

Архитектура проекта автоматического обучения ML-моделей

Хабр, привет! На связи Кравцов Кирилл и Суздалев Руслан из команды моделирования поведенческих сценариев Центра развития искусственного интеллекта СПАО «Ингосстрах» (далее – ЦРИИ). В статье поделимся решением, которое помогает нам быстрее обучать и интегрировать модели в компании.С ростом компании и ЦРИИ, в частности, у нас появлялось все больше бизнес-заказчиков, которым нужны были ML-модели. Поэтому потребность росла, а ограниченность ресурсов не позволяла быстро обрабатывать задачи бизнеса и многое уходило в беклог.

продолжить чтение

Бьем автоматизацией по ручной работе с данными: как мы избавились от рутины с ML-моделями

продолжить чтение

AutoML и NAS

Автор статьи: Сергей Артамонов - DS Wildberries, Research Engineer Skoltech, аспирант мехмата МГУ, преподаватель Школы Высшей Математики

продолжить чтение

AutoML: гид по автоматизации машинного обучения для начинающих

Александр РыжковМентор Skillfactory, руководитель команды LightAutoML и 4х Kaggle Grandmaster

продолжить чтение

Rambler's Top100