Анатомия performance-critical C++ кода на примере ECS
Всем привет! Это продолжение статей про мою ECS with Sectors в моём движке Stellar Forge!В предыдущей статье я описал структуру памяти, что являлось подготовкой фундамента для быстрой итерации, а сейчас хочу рассказать как по этой памяти передвигаться. Получилась общая обзорная статья о том, как заставить C++ код быть быстрее, так что устраивайтесь поудобнее :-)Статья будет полезна всем, кто пишет performance-critical код на C++: геймдев, HFT, обработка данных, embedded.0. Профилирование, бенчмарки, тесты
6 Docker-фич для продвинутого использования. Часть 2
Привет Хабр! Снова.Docker уже давно стал стандартом, и базовые команды вроде docker run, docker build или docker compose up знакомы любому разработчику. Но экосистема и инструментарий контейнеризации гораздо глубже.В этом материале мы отойдём от банальных инструкций и разберём шесть продвинутых инструментов и настроек. Думаю, вы узнаете для себя что-нибудь новое.Читайте первую часть по ссылке.Dive: Рентген для образовDive
Гибридный подход к контексту: как сделать LLM-агентов быстрее и дешевле
Команда AI for Devs подготовила перевод статьи о том, как AI-агенты на базе LLM тратят лишние деньги из-за разрастающегося контекста и как простое маскирование наблюдений нередко работает лучше сложного LLM-суммирования. Авторы предлагают гибридный метод, который делает агентов дешевле и надёжнее без дообучения модели.
Мульти-модельная оркестрация LLM: архитектура маршрутизации, которая снизила затраты в 117 раз
Как мы провели 12,000+ API-вызовов к 11 моделям, открыли правило 60-70, и построили систему маршрутизации с ROI 4,853xКонтекст: кто пишет и о чём эта статьяИгорь Масленников. В IT с 2013 года. Последние два года развиваю AI Dev Team в DNA IT — подразделение, которое работает на мульти-модельной архитектуре. Это техническая статья о том, как мы построили систему оркестрации LLM-моделей для платформы генерации образовательных курсов.Статья для тех, кто:Строит AI-продукты и упирается в стоимость APIДумает о мульти-модельной архитектуре, но не знает, с чего начать
Компилируем Python так, чтобы он работал везде
Это история о том, как написать компилятор Python, генерирующий оптимизированные ядра и при этом позволяющий сохранить простоту кода.Предисловие
10 приёмов профессионала для ускорения кода на Python
Команда Python for Devs подготовила перевод статьи о том, как делать код на Python быстрее без переписывания проектов с нуля. В статье 10 практичных приёмов — от sets и bisect до локальных функций и предвыделения памяти — которые дают реальный прирост скорости в типовых сценариях.В быстро меняющемся мире разработки Python прочно занял место одного из ведущих языков благодаря своей простоте, читаемости и универсальности. Он лежит в основе огромного числа приложений — от веб-разработки до искусственного интеллекта и data engineering. Однако под его элегантным синтаксисом скрывается сложность:
Оптимизация через партицирование
Привет, Хабр! Меня зовут Виталий Сушков, я .NET-разработчик и техлид в Т-Банке. На конференции DotNext в 2024 году я выступал с докладом о применении механизма декларативного партицирования таблиц в PostgreSQL.
ИИ как опасный советчик: Почему нейросетям нельзя доверять настройку производительности PostgreSQL
Нейросеть видит паттерны, но не чувствует боль базы данных. Аннотация
BERT — это всего лишь одноэтапная диффузия текста
Некоторое время назад компания Google DeepMind представила Gemini Diffusion — экспериментальную языковую модель, генерирующую текст методом диффузии. В отличие от традиционных моделей, написанных в стиле GPT и генерирующих слово за словом, Gemini создаёт текст целыми блоками, пошагово уточняя случайный шум.Я прочитал статью «Large Language Diffusion Models» — и с удивлением узнал, что дискретная диффузия языка представляет собой просто обобщение метода генерации пропущенного токена (MLM), практикуемого уже с 2018

