RLM.
RLM-Toolkit v1.2.1: Теоретические основы и оригинальные разработки
Научное исследование архитектурных решений в контексте теории информации, криптографии и когнитивных систем📌 Это продолжение статьи RLM-Toolkit: Полное руководство по обработке 10M+ токеновПервая часть охватывала практические аспекты. Здесь — глубокий теоретический анализ: от теории Шеннона до когнитивной архитектуры памяти.АннотацияНастоящая работа представляет комплексный анализ архитектурных решений RLM-Toolkit v1.2.1, разработанного в рамках проекта SENTINEL AI Security Platform.Мы демонстрируем:Криптографическую необходимость
Рекурсивные языковые модели (RLM) – парадигма 2026 года
Команда AI for Devs подготовила перевод большого исследовательского материала о рекурсивных языковых моделях (RLM). Авторы разбирают, почему простое увеличение контекстного окна больше не решает проблему долгоживущих агентов, и показывают альтернативу: обучение моделей активному управлению собственным контекстом через context folding и под-LLM. Статья основана на обширных экспериментах и даёт практический взгляд на то, каким может быть следующий шаг в развитии LLM-агентов.Как мы планируем управлять чрезвычайно длинными контекстами

