diffusion models.

Долгая дорога к DiT (часть 2)

Новая задача

продолжить чтение

T-LoRA: дообучить диффузионную модель на одной картинке и не переобучиться

Вы когда‑нибудь мечтали стать лучшей версией себя? Моложе, красивее, идеальнее… А вот LoRA уже стала!Меня зовут Вера Соболева, я научный сотрудник лаборатории FusionBrain Института AIRI, а также стажер‑исследователь Центра глубинного обучения и байесовских методов НИУ ВШЭ. Cегодня я расскажу про наше свежее исследование T‑LoRA: Single Image Diffusion Model Customization Without Overfitting. Мы с коллегами придумали эффективный способ как файнтюнить диффузионные модели с помощью LoRA всего по одной картинке. 

продолжить чтение

Что я вынес из Oxford Machine Learning Summer School 2025

Mathematical Institute, University of OxfordВдохновлено обзором про похожую школу — EEML.

продолжить чтение

Полезные задачи на Kaggle ( LLM, Diffusion Models)

В мире Data Science и Data Engineering ценится не только теория, но и практический опыт: умение работать с реальными данными, строить модели и доводить решения до результата. Однако получить такой опыт непросто: рабочие проекты часто закрыты NDA, а учебные кейсы не отражают сложность реальных задач.Именно поэтому платформа Kaggle заняла особое место в индустрии. Это крупнейшее мировое сообщество специалистов по данным:🌍 более 13 миллионов участников из разных стран;🏆 сотни активных соревнований ежегодно;📊 миллионы доступных датасетов и готовых ноутбуков.

продолжить чтение

Долгая дорога к DiT (часть 1)

Это лето обрадовало нас прорывом в обработке изображений с помощью нейросетей. Одна за другой выходят такие модели как Flux.1 Kontext, Qwen-Image-Edit, Gemini 2.4 Flash Image Preview (Nano Banana) демонстрируя недостижимый до сих пор уровень манипуляции цифровым контентом. Это не замена Фотошопу, а технология, открывающая врата в бесконечные визуальные миры и всё благодаря мощи Diffusion Transformer (DiT) архитектуры. Впечатлившись, я решил поближе познакомиться с диффузными трансформерами - собственноручно натренировать свою собственную DiT-модель. Об этом и будет эта статья.Но начать стоит с малого.Базовая модель

продолжить чтение

Мечтают ли диффузионки о 3D-алайнменте, или что мы планируем рассказать на грядущей ICLR

Привет, Хабр! Меня зовут Нина, я работаю инженером исследователем в AIRI, где мы с моими коллегами активно исследуем возможности генеративного ИИ. Особое место в нашей рабочей повестке занимает применение диффузионных моделей к различным задачам.Не так давно мы получили приятную новость: нашу статью

продолжить чтение

От каскадных моделей до картинок в 4к: как эволюционировали диффузионки

На дворе 2025 год. Генерацией картинок и видео в интернете больше никого не удивишь. Генеративный контент повсюду, а его качество настолько высоко, что бывает трудно отличить синтетическую картинку от реальной.

продолжить чтение

Marigold-DC

MarigoldПривет! Сегодня я хочу рассказать про сеточку Marigold-DC решающую задачу Depth Completion. Пользуясь случаем, оставляю ссылку на свой канал: notmagicneuralnetworksЗадача Depth CompletionПостроение 3D мира стало необходимым с появлением автопилотов для построения карт и планирования маршрутов.

продолжить чтение

Генеративный ИИ в работе дизайнера

Привет, Хабр! Меня зовут Иосиф.Как продуктовый дизайнер и магистрант AI Talent Hub, я всё чаще использую инструменты ИИ в своей работе, поэтому решил разобраться, как они функционируют. Это нужно не только для собственного понимания, но и для того, чтобы объяснять заинтересованным в этой теме коллегам. Данная статья не претендует на глубокий анализ — я постарался изложить материал простым языком и в сжатой форме.

продолжить чтение

Rambler's Top100