Машинное обучение. - страница 235

NEAT. Основы

ВведениеСегодня "теорию" NEAT, который появился в далёком 2004-м году, но при этом остается мейнстримом среди нейроэволюционных алгоритмов. Мы разберём классический вариант, так как это основа и все остальные варианты(CoDeepNEAT, HyperNEAT и т.д.) будут намного сложнее в имплементации, то есть шанс применить за разумное время обычному человеку очень мал и понять их без изначального варианта представляется почти невозможным.NEAT - алгоритм расширяющихся топологий, то есть может развивать не только веса, но и саму структуру

продолжить чтение

Теневая сторона AutoML: когда no-code инструменты вредят больше, чем помогают

Абстракция — не новинка в мире разработки, но в машинном обучении абстракция без контроля превращает автоматизацию в архитектурный риск.AutoML для многих организаций стал входной точкой в машинное обучение. Он обещает именно то, что хотят услышать команды, находящиеся под давлением: вы приносите данные, а мы займёмся моделированием. Не нужно управлять пайплайнами, настраивать гиперпараметры или изучать scikit‑learn и TensorFlow — просто кликай, перетаскивай и развёртывай.На первых порах — сплошной восторг.

продолжить чтение

Периодическая система машинного обучения

В MIT создали первую “периодическую таблицу” методов машинного обучения, при которых в исходных данных не задаются конкретные признаки (representation learning). Оказывается, многие (а может оказаться, что и все) методы, даже совсем друг на друга не похожие, сводятся по существу к одной и той же формуле. Причем не слишком сложной по своей форме. Работу представили в конце апреля на конференции ICLR 2025.

продолжить чтение

Периодическая система машинного обучения

В MIT создали первую “периодическую таблицу” методов машинного обучения, при которых в исходных данных не задаются конкретные признаки (representation learning). Оказывается, многие (а может оказаться, что и все) методы, даже совсем друг на друга не похожие, сводятся по существу к одной и той же формуле. Причем не слишком сложной по своей форме. Работу представили в конце апреля на конференции ICLR 2025.

продолжить чтение

Гайд по Scikit-learn в 2025: собираем пайплайн, который не сломается

Scikit-learn — это одна из основных Python-библиотек для машинного обучения. Её подключают в прикладных проектах, AutoML-системах и учебных курсах — как базовый инструмент для работы с моделями. Даже если вы давно пишете на PyTorch или CatBoost, в задачах с табличными данными, скорее всего, всё ещё вызываете fit, predict, score — через sklearn.В 2025 году в библиотеку добавили несколько важных обновлений: доработали работу с пайплайнами, подключили полную поддержку pandas API, упростили контроль за экспериментами.

продолжить чтение

Scikit-learn теперь умеет в пайплайны: что изменилось и как работать с библиотекой в 2025 году

Scikit-learn — это одна из основных Python-библиотек для машинного обучения. Её подключают в прикладных проектах, AutoML-системах и учебных курсах — как базовый инструмент для работы с моделями. Даже если вы давно пишете на PyTorch или CatBoost, в задачах с табличными данными, скорее всего, всё ещё вызываете fit, predict, score — через sklearn.В 2025 году в библиотеку добавили несколько важных обновлений: доработали работу с пайплайнами, подключили полную поддержку pandas API, упростили контроль за экспериментами.

продолжить чтение

VLM против вмятин: Как нейросети оценивают повреждения авто по фото

Когда вы смотрите на фотографию автомобиля с помятым бампером, то вы сразу понимаете, что скорее всего случилось. А может ли также "понять" картинку Искусственный Интеллект?

продолжить чтение

Развитие искусственного интеллекта: что такое AGI, когда он появится, и что потом?

Изображение: ChatGPT 4o

продолжить чтение

Современные подходы к матчингу товаров с использованием LLM. Опыт в e-commerce

Привет, Хабр! Меня зовут Виталий Кулиев и я Data Science Tech Lead из Wildberries & Russ. На конференции HighLoad++ 2024 поделился опытом своей команды в решении задачи матчинга товаров с помощью больших языковых (LLM) и визуально-языковых (VLM) моделей. Дисклеймер: в этой статье показан один из вариантов матчинга товаров, который был реализован в конце 2024 года. С того момента матчинг с помощью LLM улучшался и изменялся, о чем мы расскажем в других статьях. Мы также используем более классические алгоритмы матчинга с использованием машинного обучения.Разбираемся, что такое матчинг

продолжить чтение

Google запускает агента по программированию Jules

Google выходит на растущий рынок программирования с использованием ИИ с новым инструментом под названием «Jules». Этот агент предназначен для помощи разработчикам в выполнении повторяющихся задач, таких как исправление ошибок, написание документации, создание тестов и разработка функций.

продолжить чтение

Rambler's Top100