cnn.
Аугментация данных для повышения точности классификации вредоносного ПО с использованием модели CNN
Актуальность исследованияСовременные компьютерные атаки становятся все более сложными и изощренными, создавая серьезную угрозу информационной безопасности как для крупных организаций, так и для обычных пользователей устройств, подключенных к глобальной сети. Вредоносное программное обеспечение (ВПО) эволюционирует, используя сложные методы сокрытия и мутации кода, что затрудняет его выявление антивирусными программами и системами защиты.
Как искать различия на изображениях в визуальном тестировании ПО с помощью ИИ
Ключевые выводыОбнаружение различий между двумя изображениями — важная задача в визуальной автоматизации тестирования, когда скриншот нужно сравнить с предыдущей версией или эталонным дизайном.Генеративный ИИ на базе мультимодальных языковых моделей отлично распознаёт и объясняет содержимое изображения, но способен выявлять различия лишь в тех аспектах, на которых он был явно обучен.Эта задача обычно решается с помощью сверточной нейронной сети (CNN), сравнивающей небольшие фрагменты изображений (область 9×9 пикселей) вместо отдельных пикселей.
Визуальное тестирование с ИИ: сравнение скриншотов без ложных срабатываний
Ключевые выводыОбнаружение различий между двумя изображениями — важная задача в визуальной автоматизации тестирования, когда скриншот нужно сравнить с предыдущей версией или эталонным дизайном.Генеративный ИИ на базе мультимодальных языковых моделей отлично распознаёт и объясняет содержимое изображения, но способен выявлять различия лишь в тех аспектах, на которых он был явно обучен.Эта задача обычно решается с помощью сверточной нейронной сети (CNN), сравнивающей небольшие фрагменты изображений (область 9×9 пикселей) вместо отдельных пикселей.
ИИ в 3 фазы… снижение рисков, экономия времени и помощь человеку. Но …— нужно дать пользу уже на первом шаге
«В крупных компаниях ИИ не продается как технология. Он продается как снижение рисков, экономия времени и помощь человеку. Но чтобы его купили — нужно дать пользу уже на первом шаге. Вот как мы сделали это без бюджета, без команды и с одними только идеями»1. Введение: Не про ИИ. Про то, как заставить бизнес поверить в измененияПривет, Хабр!Меня зовут Алексей. Я руковожу направлением искусственного интеллекта в федеральном холдинге. Моя задача — не «внедрить нейросеть», а сделать так, чтобы люди перестали бояться изменений.Раньше сотрудникам требовалось 40–60 минут, чтобы создать документ выбраковки:
Методы интерпретации на основе вмешательства в CV: RISE implementation
Привет, друзья! Добро пожаловать в новый туториал из серии практических материалов по explanable AI (интерпретируемости моделей). Он посвящен методу интерпретации на основе вмешательства — RISE. В этом материале разобрана теоретическая постановка метода, подчеркнуты красивые математические идеи и переходы, и, конечно, реализован код для практики. Приглашаю к чтению! Ноутбук к туториалу доступен на гитхаб. ВведениеМетоды интерпретации на основе вмешательства основаны на идее ответа на вопрос: на вопрос:
Vision Transformers: всё, что вам нужно — это внимание
Vision Transformers: всё, что вам нужно — это вниманиеСтатья о революционной архитектуре, которая изменила подход к компьютерному зрениюАннотацияС появлением статьи "Attention Is All You Need" закончилось доминирование рекуррентных нейронных сетей (Recurrent Neural Network — RNN). Поскольку трансформеры показывают лучшие результаты на практике по сравнению с RNN, давайте разберёмся, что они собой представляют и как работают в области компьютерного зрения.Краткая история искусственного интеллекта: от истоков до наших дней
ZX Spectrum проходит тест Тьюринга: учим 8-битный процессор решать CAPTCHA
Или как я потратила выходные на доказательство временного парадокса: Z80 1976 года решает CAPTCHA 2010-х в 2025 годуВступлениеПредставьте: вы открываете сундук и находите пыльный ZX Spectrum. «В музей Яндекса», — думаете вы. А что если я скажу, что эта железка с 48 килобайтами памяти может с 95.5% точностью распознавать рукописные цифры и проходить те самые CAPTCHA-тесты «Я не робот» из 2010-х?Более того: технически она могла это делать с момента выпуска в 1982 году. <cut />Временной парадокс в трёх актах1976: Рождение героя
Ян Лекун, создатель LeNet, формата DjVu и адвокат опенсорса
Ян Лекун, один из крёстных отцов современного ИИ, в своём твиттере резко критикует корпоративных исследователей ИИ, которые ведут проприетарные разработки и занимаются «нагнетанием страха». Среди этих людей называются Сэм Альтман (OpenAI), Демис Хассабис (Google DeepMind) и Дарио Амодеи (Anthropic) Ян Лекун (Yann LeCun) — французский и американский учёный в области машинного обучения и компьютерного зрения. Известен как автор легендарной системы LeNet (1989 г.), где одним из первых начал применять методы биологических нейронных сетей для оптического распознавания символов (OCR). Сейчас занимает должность вице-президента и ведущего исследователя ИИ в корпорации Meta (руководит разработкой опенсорсной языковой модели LLaMA, в том числе). При этом остаётся ярым приверженцем опенсорса, свободной науки и научно-технического прогресса человечества.
Нейросетевой подход для классификации событий отслеживаемых сверхширокополосным радаром
В данной статье речь пойдёт о том, как используя разные архитектуры нейронных сетей классифицировать данные полученные со сверхширокополосного радара " XETHRU by NOVELDA X4M02 290056-010 ". Моя работа основана на публикации " UWB-gestures, a public dataset of dynamic hand gestures acquired using impulse radar sensors

