data science. - страница 12

От комиксов до нейросетей: 5 книг, которые помогут начинающему Data Scientist’у

Привет! Меня зовут Марк Паненко. Я Chief Data Science в Ozon Банке и большой любитель технической литературы. Этой статьёй я хочу открыть серию публикаций, в которых поделюсь лучшими, на мой взгляд, книгами, необходимыми Data Scientist-у на разных этапах его профессионального развития.Дисклеймер: эта публикация написана на основе одного из выпусков моего подкаста — если хочется получше погрузиться в тему, приятного прослушивания.Почему книги? И при чем тут комиксы? 

продолжить чтение

Распили её правильно. А-В разрез генеральной совокупности

В написании этой статьи ни один ИИ не пострадал участвовал.Весь текст написан с помощью мощного естественного интеллекта автораВ настоящее время А/В тестирование приобрело всеобъемлющий и неоспоримый формат исследования своих действий в предложении товаров и услуг, да и любого исследования человеческих сообществ.И главное, что всё просто - берете исследуемое множество, выделяете часть и исследуете эту часть. В надежде, что свойства этой части такие, же как и у всего сообщества.

продолжить чтение

Прогнозируем движение беспилотного автомобиля (или как я вышел в тройку лидеров на Yandex Cup 2024)

*фотографии чемпионата взяты из телеграм-канала чемпионатаХабр, привет! Меня зовут Николай Назаров, я работаю аналитиком данных в X5 Tech. Недавно завершился чемпионат по программированию Yandex Cup ML Challenge 2024

продолжить чтение

Быстрый матчинг товаров на маркетплейсе Wildberries

Привет! Меня зовут Павел Саликов, я Senior ML-инженер в команде Дубликатов Товаров Wildberries. В этой статье расскажу про наше решение матчинга товаров на маркетплейсе и про то, как удалось сделать его быстрым.Что такое матчинг?Цель матчинга — предложить пользователю идентичные товары другого продавца, чтобы можно было купить товар дешевле либо с более быстрой доставкой. Вот такие блоки вы можете видеть на сайте или в приложении:

продолжить чтение

Основы очистки данных в data science

В реальной жизни данные, к сожалению, не идеальны и требуют тщательной предобработки. Проблемы с данными могут возникать по разным причинам: из-за их природы, способа сбора или ошибок при вводе. Очистка данных позволит сделать анализ более точным, а в случае машинного обучения — улучшить качество моделей.

продолжить чтение

Senior. Туда и обратно: что я сначала не понимал в своей карьере, а потом как понял

За шесть лет в IT, и в команде Machine Learning Technologу Research «Лаборатории Касперского» в частности, я прошел путь от стажера до Data Science Team Lead. Шел честно :) И на каждой ступени проходил через разные нюансы, о которых и хочу рассказать в этой статье. Полагаю, мой опыт будет полезен как начинающим коллегам, чтобы увидеть для себя недостающие аспекты профессионального роста, так и более опытным специалистам, чтобы отрефлексировать свой опыт и задуматься о том, что помогло им в карьере. Кстати, было бы здорово послушать и о ваших аспектах роста в комментариях :)

продолжить чтение

1...789101112
Rambler's Top100