нейросети. - страница 160

Саморазвивающийся искусственный интеллект

Развитие науки идет с использованием стандартных методов: cбор исходных данных, построение моделей, тестирование моделей опытами, открытая их публикация для проверки сообществом. Все это достаточно просто. Ядро науки составляют модели. Примеры моделей, которые всем известны со школьной парты: U=IR; F=ma

продолжить чтение

Самые яркие проекты по созданию нейроморфных процессоров [part 3]

Сегодня в мире существует совсем немного специализированных процессоров, чипов или крупномасштабных систем, которые можно отнести к нейроморфным. Про нейроморфные вычисления в целом мы уже говорили, про нейроморфные чипы тоже, а в этой статье  расскажем о самых заметных на сегодня реализациях. Попытаемся раскрыть их суть, разобрать отличительные черты и выделить некоторые особенности.Ну и как всегда, больше деталей на нашем инженерном портале.

продолжить чтение

Human brain inspired computing [part 1]

На прошлой неделе на портале «Истовый Инженер» мы опубликовали финальную лекцию из цикла материалов про нейроморфные вычисления — сложную область, в которой есть много перспективных технологий, близких направлению разработки микропроцессоров, которое мы активно развиваем. Например, нейроморфные чипы и аппаратные ускорители, которые будут играть важную роль в будущем развитии технологий искусственного интеллекта и, вероятнее всего, будут использоваться везде, где необходимо обрабатывать данные в быстроменяющихся, неструктурированных средах и в режиме реального времени. Мы решили поделиться серией обзорных статей, составивших небольшое исследование на эту же тему. Оно было сделано нашей исследовательской группой осенью прошлого года в том числе и для того, чтобы сформировать собственное представление об актуальных технологиях, проблемах, перспективах и проектах. Позднее эта работа стала основой для целого цикла «взрослых» материалов, авторами которых стали эксперты из российских институтов и компаний (МГУ, ЛЭТИ, Сколтех, Яндекс), и даже европейской лаборатории Intel Research.

продолжить чтение

Синаптические веса в нейронных сетях – просто и доступно

Этой статьей начинается серия статей, рассказывающих просто и доступно о нейронных сетях и искусственном интеллекте.

продолжить чтение

Возможно, в мозге найден эквивалент обратного распространения

Давно известно, что биологические нейроны действуют подобно битам: либо отправляют сигнал соседнему нейрону, либо не делают этого; поэтому исследователи построили модель, где роль обучающих сигналов выполняют всплески нейронной активности.

продолжить чтение

Исследователи из Китая скрыли вредонос внутри нейросети без нарушения ее работы

Китайские исследователи сообщили, что они смогли внедрить вредоносное ПО в половину узлов модели искусственного интеллекта. По их мнению, вредоносы можно успешно встраивать непосредственно в искусственные нейроны, составляющие модели машинного обучения, таким образом, чтобы их нельзя было обнаружить. При этом сама нейросеть сможет продолжить выполнение поставленных задач в обычном режиме.

продолжить чтение

Исследователи Бостонского университета предсказывают восстановление речи после инсульта компьютерной симуляцией

продолжить чтение

Google и Гарвард выпустили визуализацию коннектома человеческого мозга на 1,4 петабайта

Исследователи Гарвардского университета совместно с Google AI создали трёхмерную карту одной миллионной части человеческого мозга, состоящую из 196 миллионов двумерных изображений. Объём обработанной информации — 1,4 петабайта. 

продолжить чтение

Платформа машинного обучения визуализирует активные нейроны в режиме реального времени

Исследователи Дюкского университета научили ИИ искать и выделять активные нейроны. Новый способ упростит диагностику и позволит наблюдать за мозгом людей и других животных в режиме реального времени.   

продолжить чтение

О том, как гениальный беспризорник и профессор пили виски и придумывали первую модель искусственного нейрона

Первая модель искусственного нейрона Мак-Каллока-Питтса Сейчас один из самых популярных инструментов искусственного интеллекта — это нейронные сети. Само название намекает на то, что речь идёт о некотором аналоге естественных нейронов и синаптических связей в мозгу. Отсюда вытекает распространённое ошибочное предположение, что нейронные сети являются точной копией своего биологического прототипа. Конечно же, это не так, а точнее не совсем так: учёные действительно работают над созданием импульсных нейронных сетей, предназначенных для максимально достоверной симуляции процессов, происходящих в нервной ткани, но обычно искусственный нейронные сети довольно сильно отличаются от своих биологических прародителей. Революция глубокого обучения произошла благодаря моделям, похожим на мозг примерно в той мере, в которой самолёты похожи на птиц. И всё-таки у истоков создания этих моделей стояли попытки учёных три четверти века назад постичь принципы работы нервной системы живых существ. Один из «дедушек» современных нейросетей — это перцептрон Розенблатта, представленный публике в конце 1950-х, но его появлению предшествовали другие, менее известные попытки описать принципы, по которым могла бы работать «думающая» машина, подобная мозгу. К ним относятся исследования Уолтера Питтса и Уоррена Мак-Каллока. Их модель, увидевшая свет в 1943-м году в статье под названием «Логическое исчисление идей, относящихся к нервной активности», была весьма новаторским изобретением. И за ней стоит довольно занятная история. Кто такие были эти товарищи, приложившие руку к созданию модели? Чопорные учёные в очках с роговой оправой или, может, аналог современных хипстеров из thinktank’ов?

продолжить чтение

Rambler's Top100