RLHF.
Шесть осей прогресса LLM: почему «данные закончились» — это заблуждение
TL;DR«Данные закончились» — это про одну ось из шести. Пять остальных работают. Одномерные прогнозы — мусор.Вот в чём проблемаЗайдите в любой айтишный-чат.«Из архитектуры выжали всё». «Данные закончились». «Модели будут деградировать».Звучит умно. Проблема? Это полная ерунда.Не потому что эти люди глупы. Часто это крутые разработчики. Проблема в том, что они видят одну ось — supervised pre-training на интернет-текстах — и думают, что это весь AI.Ось упёрлась? Значит, AI упёрся.Нет. Не значит.Давайте честно: одномерное мышление — это ловушка2012 год.
Почему ваша нейросеть всегда предаст вас ради вежливого хакера с плохими намерениями?
Дисклеймер: Эта статья — не руководство по взлому (How-to) и не сборник эксплойтов. Это попытка системного анализа архитектурных ограничений LLM, которые делают промпт-инъекции фундаментальной проблемой на текущем этапе развития технологий. Мы рассмотрим уязвимости через призму механики Attention, токенизации и RLHF, чтобы понять, почему классические детерминированные методы защиты (Black Box) здесь перестают работать.Прошло уже больше 3 лет с момента появления первой промпт-инъекции. Кажется, что за это время было сделано всё возможное, были потрачены бюджеты небольших стран на Red Teaming
RL (RLM): Разбираемся вместе
Всем привет! Недавно я познакомился с курсом по глубокому обучению с подкреплением от HuggingFace Deep Reinforcement Learning Course и захотел сделать выжимку самого интересного. Эта статья — своего рода шпаргалка по основам Reinforcement Learning (RL) и одному из ключевых алгоритмов — PPO, который лежит в основе тонкой настройки современных LLM (Large Language Models).Вы наверняка слышали про такие модели, как o1 от OpenAI или QwQ от Alibaba. Их "рассуждающие" способности во многом — результат применения RL. Давайте разберемся, как обычный принцип обучения, известный по играм вроде AlphaGo, помогает языковым моделям стать умнее.
Практика alignment: данные, RLHF и UX как конкурентное преимущество
Взгляд на самую большую проблему в мире ИИ, почему это важно для вас и почему это так ценно.
Humans-in-the-loop vs synthetic data: за что идёт борьба на рынке AaaS
Scale зарабатывает более $750 млн в год на продаже данных для RLHF. Кто собирается их потеснить?Scale AI — стартап, ранее известный своими контрактами на разметку данных для беспилотных автомобилей и военных проектов, приближается к годовому обороту в $1 млрд благодаря своим дата-сервисам, используемым в техниках вроде reinforcement learning from human feedback (RLHF). Я давно слышал слухи об их масштабах, о том, что они работают буквально со всеми крупными AI-лабораториями — от Meta до OpenAI, но увидеть подтверждение этого в публичных отчетах ощущается совсем иначе.Цитата из
Выбросить нельзя, переобозначить. Или как дообучать LLM даже на ошибках и без RLHF
Одним из сложнейших этапов дообучения LLM является процесс выравнивания (alignment), который зачастую играет решающую роль в качестве модели. Традиционным подходом к решению данной задачи является RLHF, но для него нужны дополнительные обучаемые модели, а это дополнительные вычислительные затраты и трудности в настройке. В цикле своих исследований об обучении LLM я наткнулся на интересную статью, в которой авторы предлагают метод Hindsight Instruction Relabeling (HIR).Ссылка на источник находится тут. Очень проработанная статья, советую почитать.Предыдущие материалы цикла:
Ложь искусственного интеллекта
"Everybody lies"— доктор Грегори Хаус, "Доктор Хаус".Реакция Grok, когда все же доказали, что он лжет.Введение
DeepSeek-R1 для чайников
В последние месяцы всё чаще слышим про «reasoning-модели», способные не просто продолжать текст, а действительно шаг за шагом решать сложнейшие задачи цепочкой рассуждений (chain-of-thought). Впервые такой подход эффектно показали в OpenAI o1, но, к сожалению, подробности там остаются секретными. Недавно же команда DeepSeek наделала шуму с открытыми вариантами R1 и R1-Zero, созданными поверх их собственной большой MoE-модели DeepSeek-V3. В этом посте я не стану углубляться в вопрос «чья модель лучше — o1 или R1». Зато разберу, какие главные технические детали
Законы масштабирования – архитектура O1 Pro — Инфраструктура синтетических данных, RLAIF, токеномика вычислений
С каждым днем растут страхи и сомнения относительно законов масштабирования ИИ. Большинство предсказателей отрасли ИИ

