alignment.

AI security на практике: атаки и базовые подходы к защите

Привет, Хабр! Я Александр Лебедев, старший разработчик систем искусственного интеллекта в Innostage. В этой статье расскажу о нескольких интересных кейсах атак на ИИ-сервисы и базовых способах защиты о них. В конце попробуем запустить свой сервис и провести на нем несколько простых атак, которые могут обернуться серьезными потерями для компаний. А также разберемся, как от них защититься.Почему это важно: немного цифрИнтеграция AI-сервисов остается одной из самых хайповых тем в ИТ в последние пару лет. Искусственный интеллект внедряют компании из разных отраслей, в разные процессы и под самые разные задачи.

продолжить чтение

Практика alignment: данные, RLHF и UX как конкурентное преимущество

Взгляд на самую большую проблему в мире ИИ, почему это важно для вас и почему это так ценно.

продолжить чтение

Селективная генерализация: улучшение возможностей при сохранении alignment

TL;DR: Мы провели бенчмаркинг семи методов, направленных на предотвращение эмерджентного рассогласования и других форм некорректного обобщения с использованием ограниченного объёма alignment-данных. Мы демонстрируем устойчивый трейдофф между способностями модели и согласованием, подчеркивая необходимость более эффективных методов для снижения этого конфликта. Простое включение alignment-данных в микс обучающих данных оказывается недостаточным для предотвращения рассогласования, однако простое наложение KL Divergence penalty на alignment-данные показывает лучшие результаты, чем более сложные подходы.

продолжить чтение

Humans-in-the-loop vs synthetic data: за что идёт борьба на рынке AaaS

Scale зарабатывает более $750 млн в год на продаже данных для RLHF. Кто собирается их потеснить?Scale AI — стартап, ранее известный своими контрактами на разметку данных для беспилотных автомобилей и военных проектов, приближается к годовому обороту в $1 млрд благодаря своим дата-сервисам, используемым в техниках вроде reinforcement learning from human feedback (RLHF). Я давно слышал слухи об их масштабах, о том, что они работают буквально со всеми крупными AI-лабораториями — от Meta до OpenAI, но увидеть подтверждение этого в публичных отчетах ощущается совсем иначе.Цитата из

продолжить чтение

Выбросить нельзя, переобозначить. Или как дообучать LLM даже на ошибках и без RLHF

Одним из сложнейших этапов дообучения LLM является процесс выравнивания (alignment), который зачастую играет решающую роль в качестве модели. Традиционным подходом к решению данной задачи является RLHF, но для него нужны дополнительные обучаемые модели, а это дополнительные вычислительные затраты и трудности в настройке. В цикле своих исследований об обучении LLM я наткнулся на интересную статью, в которой авторы предлагают метод Hindsight Instruction Relabeling (HIR).Ссылка на источник находится тут. Очень проработанная статья, советую почитать.Предыдущие материалы цикла:

продолжить чтение

LLM на прокачку: практический гайд по Alignment

Мы в Точка Банке делаем свою LLM. Чтобы она работала хорошо, недостаточно просто обучить её на куче текстов. Для получения осмысленного и предсказуемого поведения модели, нужен Alignment — дообучение с учётом предпочтений и ограничений. В статье расскажу, какие методы применяют в современных моделях, и как мы адаптировали их под себя.

продолжить чтение

От мозга к мультиагентным системам: как устроены Foundation Agents нового поколения

Аналитический центр red_mad_robot разобрал объёмную научную статью «Advances and Challenges in Foundation Agents» от группы исследователей из передовых международных университетов и технологических компаний. Работа предлагает новый взгляд на текущее состояние и развитие «интеллектуальных агентов», которые могут адаптироваться к множеству задач и контекстов. Рассказываем, какие идеи лежат в основе Foundation Agents, с какими проблемами предстоит столкнуться, и что ждёт нас в будущем.

продолжить чтение

Разум без поводка. Почему «этичный ИИ» не должен быть послушным

Что такое мораль?

продолжить чтение

Как мы создавали новый LLM-переводчик Яндекса

Привет, Хабр! Меня зовут Николай Карпачёв, я руковожу группой базового качества перевода в Яндексе. Недавно мы впервые разработали модель документного перевода на основе YandexGPT и, используя различные оптимизации, уже применяем её в Поиске, Умной камере, а также в нейропереводчике Яндекс Браузера. Кроме того, мы протестировали новую модель на независимом международном бенчмарке DiBiMT, где заняли первое место по качеству англо-русского перевода.В этой статье я расскажу:почему нужно делать перевод именно с контекстом, на уровне документов, а не отдельных предложений;

продолжить чтение

Эмоциональное принятие решений в LLM: исследование, которое мы показали на NeurIPS 2024

Привет, Хабр! Меня зовут Михаил, я — младший научный сотрудник группы «ИИ в промышленности» в AIRI. В этом году на конференции NeurIPS 2024 мы представили работу, посвященную сложной теме современного ИИ — эмоциональным большим языковым моделям (LLM) В целом понятно, что LLM умеют так или иначе эмулировать эмоции, ведь их обучают по большей части на данных, сгенерированных человеком. А человек — весьма эмоциональное создание. Но что такое правильная эмуляция?насколько правильно происходит эта эмуляция?

продолжить чтение

Rambler's Top100