Реализуем Q learning на Python
Обучение с подкреплением является (Reinforcement learning) одним из направлений ML. Суть этого метода заключается в том, что обучаемая система или агент учится принимать оптимальные решения через взаимодействие со средой. В отличие от других подходов, Reinforcement learning (RL) не требует заранее подготовленных данных с правильными ответами или явной структуры в них.
Почему молчит умный счетчик? Побеждаем коллизии в сетях NB-IoT
IoT-сети проектировали для миллионов устройств, но они захлебываются уже от тысяч. Когда в нашем районе на секунду моргнул свет, 10 000 умных счетчиков одновременно потеряли связь и начали переподключаться. Три четверти так и не смогли выйти в эфир. Проблема в RACH — канале случайного доступа. При массовых подключениях он превращается в узкое горлышко, куда каждый пытается прорваться первым.
Qwen3-MT — Alibaba выпускает еще одну модель для машинного перевода
Это обновление основано на мощной модели Qwen3, использующей триллионы многоязычных токенов и токенов для перевода, что позволяет значительно улучшить многоязычное понимание и возможности перевода модели. Благодаря интеграции методов обучения с подкреплением модель значительно повышает точность перевода и беглость речи.
«Скайнет» наоборот: как вырастить и обучить ИИ с помощью Дарвин-Гёдель машины для улучшения человеческой демографии
Разрабатываем и растим «цифрового губера» - консультанта по вопросам государственного политического управления, демографии и миграции. Решаем задачу оптимизации экономики и миграционной политики для устойчивого демографического роста в 89 регионах с помощью взаимодействующих друг с другом и обменивающихся опытом ИИ-агентов. Мультиагентное обучение на основе мутаций, скрещивания и эволюции, Multi-Agent Deep Deterministic Policy Gradient и Darwin Gödel Machine.
Исследователи обучают ИИ генерировать длинные тексты, используя только метод обучения с подкреплением
Исследовательская группа из Сингапура и Китая представила LongWriter-Zero — модель искусственного интеллекта, которая использует обучение с подкреплением для написания текстов объёмом более 10 000 слов без использования синтетических обучающих данных.
Добро пожаловать в эру опыта: почему обучение с подкреплением изменит мир
Исследователи из Google DeepMind опубликовали интересную статью "Welcome to the Era of Experience"
Глубокое Q-обучение (DQN)
вкалывают роботы...Немного контекстаПодходит к завершению серия моих заметок про использование идей искусственного интеллекта для решения задачи коммивояжера (TSP). Я последовательно разобрал некоторые классические решения TSP и далее рассказал
А не пора ли нам подкрепиться?
Краткое содержание предыдущих серийВ заметке про Pointer Network было много всего: нетривиальная архитектура кодировщика (энкодера) и декодера, механизм внимания, а также совсем немного про обучение с подкреплением. В общем, много-много всякого, нужного для охвата пазла целиком. Далее, в следующей заметке
Исследователи из Стэнфорда обучили ИИ играть в Among Us: их агенты выигрывают людей уже в 45% случаев
Исследователи из Стэнфорда выпустили статью про то, как обучили модель играть в Among Us, при этом не используя вообще никаких размеченных людьми данных. Вместо этого они применяли только обучение с подкреплением и несколько этапов файнтюнинга, в ходе которых агенты учились общаться, убеждать, лгать или предсказывать предателя (импостера).

