PyTorch. - страница 2

Momentum Attention: когда внимание получает инерцию

В классическом self-attention каждый токен смотрит на другие токены, чтобы понять, что важно в данный момент.Внимание распределяется мгновенно:Именно этот механизм сделал трансформеры тем, чем они стали.Но вот в чём проблема - внимание не имеет памяти.

продолжить чтение

Умный Learning Rate Scheduler: Управляем скоростью обучения, анализируя ускорение

Мы привыкли использовать ReduceLROnPlateau если val_loss не улучшается N эпох подряд - режем learning_rate. Это работает. Мы ждем, пока обучение врежется в стену, и только потом реагируем.А что, если мы могли бы увидеть эту стену заранее? Что, если бы мы могли сбросить скорость плавно, еще на подходе к плато, и снова нажать на газ, если впереди откроется новый спуск?Я хочу поделиться концепцией умного LR шедулера, который управляет скоростью обучения, анализируя не сам loss, а скорость его изменения.Проблема ReduceLROnPlateau: Мы реагируем на симптом, а не на причину

продолжить чтение

Долгая дорога к DiT (часть 2)

Новая задача

продолжить чтение

Фреймворк PyTorch получил крупное обновление

Фреймворк PyTorch, на котором обучается половина современных нейросетей, получил крупное обновление — версию 2.9. Оно может показаться техническим, но на самом деле закладывает основу для следующего витка AI-революции.

продолжить чтение

Как искать различия на изображениях в визуальном тестировании ПО с помощью ИИ

Ключевые выводыОбнаружение различий между двумя изображениями — важная задача в визуальной автоматизации тестирования, когда скриншот нужно сравнить с предыдущей версией или эталонным дизайном.Генеративный ИИ на базе мультимодальных языковых моделей отлично распознаёт и объясняет содержимое изображения, но способен выявлять различия лишь в тех аспектах, на которых он был явно обучен.Эта задача обычно решается с помощью сверточной нейронной сети (CNN), сравнивающей небольшие фрагменты изображений (область 9×9 пикселей) вместо отдельных пикселей.

продолжить чтение

Визуальное тестирование с ИИ: сравнение скриншотов без ложных срабатываний

Ключевые выводыОбнаружение различий между двумя изображениями — важная задача в визуальной автоматизации тестирования, когда скриншот нужно сравнить с предыдущей версией или эталонным дизайном.Генеративный ИИ на базе мультимодальных языковых моделей отлично распознаёт и объясняет содержимое изображения, но способен выявлять различия лишь в тех аспектах, на которых он был явно обучен.Эта задача обычно решается с помощью сверточной нейронной сети (CNN), сравнивающей небольшие фрагменты изображений (область 9×9 пикселей) вместо отдельных пикселей.

продолжить чтение

Мы решили задачу омографов и ударений в русском языке

Мы наконец решили задачу омографов. Конечно, с рядом оговорок, куда без них. Получилось пресловутое приключение на 20 минут.

продолжить чтение

Лучшие фреймворки для машинного обучения в 2025 году

Сегодня ни один крупный проект в области машинного обучения (ML) не обходится без фреймворков — готовых наборов библиотек, в которых базовые алгоритмы уже оптимизированы для различных архитектур. Выбор правильного фреймворка не только упрощает разработку, но и определяет успех проектов по внедрению искусственного интеллекта.

продолжить чтение

Долгая дорога к DiT (часть 1)

Это лето обрадовало нас прорывом в обработке изображений с помощью нейросетей. Одна за другой выходят такие модели как Flux.1 Kontext, Qwen-Image-Edit, Gemini 2.4 Flash Image Preview (Nano Banana) демонстрируя недостижимый до сих пор уровень манипуляции цифровым контентом. Это не замена Фотошопу, а технология, открывающая врата в бесконечные визуальные миры и всё благодаря мощи Diffusion Transformer (DiT) архитектуры. Впечатлившись, я решил поближе познакомиться с диффузными трансформерами - собственноручно натренировать свою собственную DiT-модель. Об этом и будет эта статья.Но начать стоит с малого.Базовая модель

продолжить чтение

Всё что нужно знать про torch.sparse

Разработчики PyTorch предоставили модуль torch.sparse для работы с разреженными тензорами, где большинство элементов – нули. Зачем это нужно? Представьте матрицу смежности графа, сильно обрезанную сеть или облако точек – хранить такие данные плотным массивом без надобности расточительно. Разрежённая структура сохраняет только ненулевые элементы и их индексы, что сильно экономит память и ускоряет вычисления. Например, матрица размером 10,000 на 10,000 с 100 000 ненулевых float-значений в разрежённом COO-формате займёт не 400 МБ, а около 2 МБ.Несмотря на перспективы,

продолжить чтение

Rambler's Top100