grafana.

Утечка, которой не было: как Next.js раздувает RAM в Kubernetes

Привет, Хабр! Меня зовут Вадим Королёв. Я руководитель команды разработки в X5 Tech. Очень люблю Next.js и решать проблемы, которые он приносит. С ним всегда происходит что-то интересное. Расскажу о причине утечки памяти в Node.js, которая оказалась глубже, чем можно было подумать.

продолжить чтение

Как мы учили ИИ тушить инциденты вместо нас  (что из этого вышло)

Привет, меня зовут Артем, я тимлид DevOps в одной аутстафф-компании. Столкнулись с классической ситуацией: десятки микросервисов, Kubernetes, куча observability-стека (Prometheus, Loki, Tempo, Grafana) и... постоянные ночные инциденты. «High CPU», «Pod CrashLoopBackOff», «5xx errors rising». У нас есть runbooks, документация, скрипты для быстрого доступа к логам. Но в 3 ночи, когда срабатывает критический алерт, тратишь время на то, чтобы проснуться, сообразить, куда залогиниться и какую команду выполнить… Мы задались вопросом: а если первым на инцидент будет реагировать не человек, а ИИ-агент?⠀⠀Боль, которую мы хотели решить:1.    

продолжить чтение

От ощущений к цифрам: как мы внедрили метрики перформанса в андроид приложение

Всем привет, меня зовут Тимурandroid разработчик в платформенной команде с опытом около 5 лет, в основном в сфере ритейла и e-com.

продолжить чтение

10 лучших open source инструментов Observability 2025

В этом году инструменты observability с открытым исходным кодом вышли за рамки простого мониторинга. Теперь они конкурируют, а зачастую и превосходят коммерческие SaaS‑платформы по масштабируемости, гибкости и совместимости. Команды из разных отраслей внедряют стеки решений наблюдения с открытым исходным кодом, чтобы избежать привязки к одному поставщику, обеспечения сквозной прозрачности (логи, метрики, трассировки), экономии на лицензиях и много другого.

продолжить чтение

Библиотека OutboxML от Страхового Дома ВСК

Хабр, привет! Меня зовут Семён Семёнов, я руковожу Data Science и Machine Learning в Страховом Доме ВСК. В этой статье расскажу, как мы создали систему автоматического обучения и развёртывания моделей машинного обучения с открытым исходным кодом.

продолжить чтение

Обнаружение аномалий в данных временных рядов с помощью статистического анализа

Настройка оповещений для различных метрик не всегда представляет из себя тривиальную задачу. В некоторых случаях может быть вполне достаточно простого порогового значения, например, для отслеживания свободного места на диске устройства. Вы можете просто установить оповещение о том, что осталось 10% свободного места, и все готово. То же самое касается и мониторинга доступной памяти на сервере.

продолжить чтение

Концерт для Java с ИИ — разработка готовых к продакшен LLM приложений (часть 2)

Команда Spring АйО перевела и адаптировала доклад Томаса Витале “Concerto for Java and AI — Building Production-Ready LLM Applications”, в котором рассказывается по шагам, как усовершенствовать интерфейс приложения с помощью больших языковых моделей (LLM). В качестве примера автор доклада на глазах слушателей разрабатывает приложение-ассистент для композитора, пишущего музыку для фильмов. В первой части

продолжить чтение

Rambler's Top100