fine-tuning. - страница 2

Без тренировки, но с обучением: имплицитная динамика in-context learning

АннотацияОдной из наиболее примечательных особенностей Large Language Models (LLM) является их способность к in-context learning — обучению в контексте. В частности, на этапе инференса LLM может усваивать новые паттерны без какого-либо дополнительного обновления весов, если эти паттерны представлены в виде примеров в промпте, даже если эти паттерны не встречались во время обучения. Механизмы, за счёт которых это возможно, всё ещё во многом остаются неизвестными.

продолжить чтение

Практика alignment: данные, RLHF и UX как конкурентное преимущество

Взгляд на самую большую проблему в мире ИИ, почему это важно для вас и почему это так ценно.

продолжить чтение

Селективная генерализация: улучшение возможностей при сохранении alignment

TL;DR: Мы провели бенчмаркинг семи методов, направленных на предотвращение эмерджентного рассогласования и других форм некорректного обобщения с использованием ограниченного объёма alignment-данных. Мы демонстрируем устойчивый трейдофф между способностями модели и согласованием, подчеркивая необходимость более эффективных методов для снижения этого конфликта. Простое включение alignment-данных в микс обучающих данных оказывается недостаточным для предотвращения рассогласования, однако простое наложение KL Divergence penalty на alignment-данные показывает лучшие результаты, чем более сложные подходы.

продолжить чтение

Humans-in-the-loop vs synthetic data: за что идёт борьба на рынке AaaS

Scale зарабатывает более $750 млн в год на продаже данных для RLHF. Кто собирается их потеснить?Scale AI — стартап, ранее известный своими контрактами на разметку данных для беспилотных автомобилей и военных проектов, приближается к годовому обороту в $1 млрд благодаря своим дата-сервисам, используемым в техниках вроде reinforcement learning from human feedback (RLHF). Я давно слышал слухи об их масштабах, о том, что они работают буквально со всеми крупными AI-лабораториями — от Meta до OpenAI, но увидеть подтверждение этого в публичных отчетах ощущается совсем иначе.Цитата из

продолжить чтение

Скрытая угроза: как LLM заражают друг друга предубеждениями через «безобидные» данные

tl;dr. Мы изучаем сублиминальное обучение

продолжить чтение

Выбросить нельзя, переобозначить. Или как дообучать LLM даже на ошибках и без RLHF

Одним из сложнейших этапов дообучения LLM является процесс выравнивания (alignment), который зачастую играет решающую роль в качестве модели. Традиционным подходом к решению данной задачи является RLHF, но для него нужны дополнительные обучаемые модели, а это дополнительные вычислительные затраты и трудности в настройке. В цикле своих исследований об обучении LLM я наткнулся на интересную статью, в которой авторы предлагают метод Hindsight Instruction Relabeling (HIR).Ссылка на источник находится тут. Очень проработанная статья, советую почитать.Предыдущие материалы цикла:

продолжить чтение

Retrieval-Augmented Generation (RAG): глубокий технический обзор

Retrieval-Augmented Generation (RAG)

продолжить чтение

LiberalMind 1.5 новая LLM из России

С чего все начиналось?

продолжить чтение

Кто, как и зачем внедряет Gen AI в 2025: опыт 100 CIO

Чуть больше года назад мы выделили 16 ключевых изменений в том, как компании подходили к разработке и закупке генеративных ИИ. С тех пор ландшафт продолжил стремительно эволюционировать, поэтому мы снова провели беседы с более чем двумя десятками корпоративных заказчиков и опросили 100 CIO из 15 отраслей, чтобы помочь фаундерам понять, как в 2025 в корпорациях используют, приобретают и закладывают бюджеты под generative AI.Даже в такой динамичной сфере, где единственная постоянная — это перемены, структура рынка genAI изменилась куда сильнее, чем мы ожидали после прошлого исследования.

продолжить чтение

Разработка LLM моделей для обновления кода приложений на более высокие версии фреймворков или языков программирования

В этой статье я планирую исследовать, как можно использовать большие языковые модели (LLM) для миграции проектов между различными фреймворками. Применение LLM в задачах на уровне репозитория — это развивающаяся и всё более популярная область. Миграция кода со старых, устаревших фреймворков на новые является одной из ключевых задач в крупных корпоративных проектах.Актуальность

продолжить чтение

Rambler's Top100