Без тренировки, но с обучением: имплицитная динамика in-context learning
АннотацияОдной из наиболее примечательных особенностей Large Language Models (LLM) является их способность к in-context learning — обучению в контексте. В частности, на этапе инференса LLM может усваивать новые паттерны без какого-либо дополнительного обновления весов, если эти паттерны представлены в виде примеров в промпте, даже если эти паттерны не встречались во время обучения. Механизмы, за счёт которых это возможно, всё ещё во многом остаются неизвестными.
Практика alignment: данные, RLHF и UX как конкурентное преимущество
Взгляд на самую большую проблему в мире ИИ, почему это важно для вас и почему это так ценно.
Селективная генерализация: улучшение возможностей при сохранении alignment
TL;DR: Мы провели бенчмаркинг семи методов, направленных на предотвращение эмерджентного рассогласования и других форм некорректного обобщения с использованием ограниченного объёма alignment-данных. Мы демонстрируем устойчивый трейдофф между способностями модели и согласованием, подчеркивая необходимость более эффективных методов для снижения этого конфликта. Простое включение alignment-данных в микс обучающих данных оказывается недостаточным для предотвращения рассогласования, однако простое наложение KL Divergence penalty на alignment-данные показывает лучшие результаты, чем более сложные подходы.
Humans-in-the-loop vs synthetic data: за что идёт борьба на рынке AaaS
Scale зарабатывает более $750 млн в год на продаже данных для RLHF. Кто собирается их потеснить?Scale AI — стартап, ранее известный своими контрактами на разметку данных для беспилотных автомобилей и военных проектов, приближается к годовому обороту в $1 млрд благодаря своим дата-сервисам, используемым в техниках вроде reinforcement learning from human feedback (RLHF). Я давно слышал слухи об их масштабах, о том, что они работают буквально со всеми крупными AI-лабораториями — от Meta до OpenAI, но увидеть подтверждение этого в публичных отчетах ощущается совсем иначе.Цитата из
Скрытая угроза: как LLM заражают друг друга предубеждениями через «безобидные» данные
tl;dr. Мы изучаем сублиминальное обучение
Выбросить нельзя, переобозначить. Или как дообучать LLM даже на ошибках и без RLHF
Одним из сложнейших этапов дообучения LLM является процесс выравнивания (alignment), который зачастую играет решающую роль в качестве модели. Традиционным подходом к решению данной задачи является RLHF, но для него нужны дополнительные обучаемые модели, а это дополнительные вычислительные затраты и трудности в настройке. В цикле своих исследований об обучении LLM я наткнулся на интересную статью, в которой авторы предлагают метод Hindsight Instruction Relabeling (HIR).Ссылка на источник находится тут. Очень проработанная статья, советую почитать.Предыдущие материалы цикла:
Retrieval-Augmented Generation (RAG): глубокий технический обзор
Retrieval-Augmented Generation (RAG)
Кто, как и зачем внедряет Gen AI в 2025: опыт 100 CIO
Чуть больше года назад мы выделили 16 ключевых изменений в том, как компании подходили к разработке и закупке генеративных ИИ. С тех пор ландшафт продолжил стремительно эволюционировать, поэтому мы снова провели беседы с более чем двумя десятками корпоративных заказчиков и опросили 100 CIO из 15 отраслей, чтобы помочь фаундерам понять, как в 2025 в корпорациях используют, приобретают и закладывают бюджеты под generative AI.Даже в такой динамичной сфере, где единственная постоянная — это перемены, структура рынка genAI изменилась куда сильнее, чем мы ожидали после прошлого исследования.
Разработка LLM моделей для обновления кода приложений на более высокие версии фреймворков или языков программирования
В этой статье я планирую исследовать, как можно использовать большие языковые модели (LLM) для миграции проектов между различными фреймворками. Применение LLM в задачах на уровне репозитория — это развивающаяся и всё более популярная область. Миграция кода со старых, устаревших фреймворков на новые является одной из ключевых задач в крупных корпоративных проектах.Актуальность

