Галлюцинации в языковых моделях: виды, причины и способы уменьшения
Всем привет, меня зовут Алена, я являюсь ML-специалистом в SimbirSoft. В этой статье я хочу рассказать о галлюцинациях больших языковых моделей, а именно о том, как их оценить и минимизировать.СодержаниеВажность темыВиды галлюцинаций LLM Почему важно их выявлять?Причины появленияМетрики и подходы к оценке галлюцинацийСпособы минимизацииЗаключение
Google запускает новые функции планирования отпуска для Поиска, Карт и Gemini
Google внедряет множество новых функций — некоторые из них основаны на искусственном интеллекте — в Поиск, Карты и Gemini, которые призваны помочь людям спланировать летний отпуск. Новые функции появляются по мере того, как пользователи обращаются к таким инструментам, как ChatGPT от OpenAI, за помощью в планировании поездок.
Интеллект как результат эволюции или игра на выживание с ИИ
“...Однако естественный отбор, как мы увидим далее, является силой, постоянно готовой к действию, и настолько же неизмеримо превосходит слабые усилия человека, насколько творения природы превосходят произведения искусства” (c) Чарльз Дарвин, Происхождение видов
Подборка книг о нейронных сетях и рекомендательных системах: теория и практика
Привет, Хабр! Меня зовут Никита Малыхин, я Tech Lead в команде AdTech в Центре Big Data МТС. Сегодня поделюсь списком любимых книг, которые позволят изучить фундаментальные принципы и современные подходы в машинном обучении.В эпоху стремительного развития искусственного интеллекта и больших языковых моделей может показаться, что потребность в классических книгах отпадает и поиск информации вышел на совершенно новый уровень. Да, мир меняется, но книги позволяют получить максимально структурированные и логично выстроенные знания по теме. Ведь именно этого не хватает как при поиске, так и подготовке промптов в LLM.
Большие языковые модели как инструмент для анализа технической документации и решения ИТ-инцидентов
Любой инженер, сталкивавшийся с инцидентами в ИТ-системах, знает: решение часто есть в документации. Проблема в том, что найти его — как искать иголку в стоге сена. Документация объёмная, разрозненная, специфичная и написана далеко не всегда для людей. Время идёт, SLA поджимает.Но что если бы у нас был помощник, который мгновенно читал бы всю документацию, понимал бы контекст сбоя и предлагал конкретные рекомендации? Сегодня это возможно — благодаря большим языковым моделям (LLM), таким как GPT-4, Claude, Gemini и другим.
Реализация AI агента на базе LLM с нуля – что включает цикл разработки
Разработка AI агента, использующего большие языковые модели (LLM) – это малоизвестный пока еще и потому интересный инженерный процесс, охватывающий весь цикл создания от идеи до финального развертывания. Технические стандарты разработки агентских систем пока еще формируются. В данной статье я поделюсь своим опытом и рассмотрю ключевые этапы, технологии и практические нюансы, которые встречаются при разработке такой системы с нуля.
Частые ловушки в экспериментах машинного обучения — рассказываем, что следует знать
Привет, Хабр! Я Павел Куницын, главный специалист по анализу данных и машинному обучению в ПГК Диджитал. Мы занимаемся разработкой цифровых продуктов в сфере железнодорожных грузоперевозок: интерактивной карты вагонного парка, оптимизатора ремонтов и других решений. В большинстве из них мы применяем машинное обучение.О том, как мы подходим к этому, я и мои коллеги рассказываем в нашем блоге на Хабре. Например, мы работаем
Моделирование экономического поведения с использованием LLM: сравнение моделей в кейнсианском конкурсе красоты
В последние годы исследования по моделированию экономического поведения с использованием искусственного интеллекта (ИИ) набирают обороты. Особенно интересен вопрос: насколько большие языковые модели (LLM) способны имитировать поведение людей в классических экономических экспериментах. В данной статье анализируется, как современные LLM решают задачу кейнсианского конкурса красоты и как их результаты отличаются от экспериментов с реальными людьми в работах Nagel (1995) и Grosskopf & Nagel (2008).Почему это важно?
От скриптов к сервисам: 10 книг для профессиональной разработки в Data Science
Привет! Меня зовут Марк Паненко, и я Chief Data Science в Ozon Банке. Сегодня я хочу поговорить про книги, которые научат писать код. В современной экосистеме Data Science недостаточно просто знать алгоритмы машинного обучения и статистические методы — необходимы прочные инженерные навыки для создания масштабируемых, поддерживаемых решений.Это третья часть серии статей о главных книгах для data-специалистов. В первой части «От комиксов до нейросетей» я писал о литературе для джунов. Во второй — «Код устареет, принципы — останутся

