ml. - страница 29

ml.

Нейронки пошли не туда

Долго пытался сформулировать, почему мне нравится Claude и Gemini и умение рассуждать ChatGPT.И наоборот, не нравится (точнее, кажется по большей части бесполезной на практике) умение ChatGPT написать точный, с первого раза работоспособный код. Или там, решить задачки из олимпиады по математике, выдавая потрясающий балл на экзаменах в MIT.Интуиция не врёт. (Юдковский перевернулся в гробу)

продолжить чтение

DeepSeek V3-0324. Что изменилось?

Все пишут, что Deep Seek V3-0324 ВНЕЗАПНО СТАЛ СИЛЬНО ЛУЧШЕ. И в чем именно?Ночью, без объявления войны, DeepSeek вырос на 19.8 баллов в математике и 10 баллов в кодировании. Также официально заявлены некоторые улучшения в понимании фронтенда и вызова тулов. Напоминаю, речь идет о нерассуждающей версии - она не рассказывает о своих мыслях как DeepSeek R1, зато работает более быстро и стабильно.Попробовать самостоятельно можно

продолжить чтение

Gemini 2.5 Pro. Большой контекст зарелизился

Никогда такого не было, и вот опять. Новый прорыв - Gemini 2.5 Pro.Это та самая сетка, которая недавно висела в топе LMArena под названием Nebula с разницей в скоре +40.

продолжить чтение

Спикеры AiConf 2025 получат бонусы

Представьте недалёкое будущее. ИИ везде и во всём помогает человеку. Коллеги разговаривают в офисе перед обедом. Автоматическая кухня на основе их предпочтений, интенсивности тренировок, особенностей повседневной жизни и эмоционального состояния готовит им подходящий набор блюд. Виртуальные помощники отбирают и сообщают только нужные и полезные новости, а рабочие консультанты суммаризируют данные по проектам и выстраивают прогноз занятости и нагрузок. Коллеги ведут неспешный small talk, чтобы отвлечься от рабочего процесса.—

продолжить чтение

SQL и нейросети: изучаем логику моделей через анализ и визуализацию весов

SQL — это не только про базы данных. В машинном обучении его используют для анализа весов, поиска аномалий, сравнения моделей и визуализации их логики. SQL помогает определить значимость признаков, заметить переобучение и оценить работу модели.

продолжить чтение

Модели машинного обучения: что могут спросить на интервью

Привет, Хабр!Сегодня рассмотрим некоторые вопросы, которые могут попасться на собеседовании на ML позиции. Как KNN ведёт себя при увеличении размерности данных? Начнём с KNN (k ближайших соседей). В малых размерностях (скажем, 2–3) расстояния между точками вполне осмысленны. Но когда число признаков вырастает до 100+, всё меняется. В такой ситуации расстояния между точками начинают стремиться к равенству — словно все объекты сидят за круглым столом, и каждый от каждого отстоит примерно на одинаковом расстоянии. Это называется проклятием размерности

продолжить чтение

Как мы обучили модель прогноза ранней просрочки: логистическая регрессия vs градиентный бустинг

Всем привет! На связи дата-сайентисты стрима разработки моделей для корпоративного сегмента ВТБ — Андрей Бояренков, Иван Кондраков и Денис Дурасов.Как уже писали ранее в другой статье

продолжить чтение

Нейросети для семантической сегментации: U-Net, LinkNet, PSPNet

Всем привет! Недавно я закончил один из этапов собственного проекта, в котором я провел сравнительный анализ 3 одних из самых известных нейросетей для семантической сегментации: U-Net, LinkNet, PSPNet. Теперь я хочу поделиться со всеми, чтобы в случае, если кто-то захочет сделать что-то подобное или ему просто понадобится, то он не искал весь интернет, как я, а легко и просто все нашел. В конце главы каждый нейросети я оставил ссылки на оригинальные статьи для желающих самостоятельно все изучить (на английском). Ссылка на мой GitHub с полноценной версией всех нейросетей и main файла в конце статьи.

продолжить чтение

Кастомные loss-функции в TensorFlow-Keras и PyTorch

Привет, Хабр!Стандартные loss‑функции, такие как MSE или CrossEntropy, хороши, но часто им не хватает гибкости для сложных задач. Допустим, есть тот же проект с огромным дисбалансом классов, или хочется внедрить специфическую регуляризацию прямо в функцию потерь. Стандартный функционал тут бессилен — тут на помощь приходят кастомные loss'ы.Custom Loss Functions в TensorFlow/KerasTensorFlow/Keras радуют удобным API, но за простоту приходится платить вниманием к деталям. Focal LossFocal Loss помогает сместить фокус обучения на сложные примеры, снижая влияние легко классифицируемых данных:

продолжить чтение

Дедупликация объявлений: как мы боремся с одинаковыми размещениями

продолжить чтение

Rambler's Top100