rag.
CAG и KAG: Улучшенные методы дополнения генерации после RAG
Доброго времени суток, уважаемые хабровчане. Меня зовут Кирилл Кухарев и я являюсь разработчиком в компании Raft. Про RAG в блоге нашей компании написано уже внушительное количество статей. Если кто-то не знаком с этой технологией или только начинает изучать, рекомендую обратить ваше внимание на статью Игоря
Как я сделал RAG для своей компании (часть 2). И как начал делать AI Агента
Итак, в первой части я сделал подход к RAG для нашей небольшой компании с большим кол-вом документов на wiki, и множеством переписок в Slack.Стек технологий: Python, ChromaDB, простой SentenceTransformer("all-MiniLM-L6-v2"), Slack API, OpenAI API, Google Gemini API, YandexGPT API, Sber Gigachat API.Что уже работает?Данные можно собрать с Wiki запуском скрипта WikiToJson.Затем данные можно загрузить в векторную базу ChromaDB, с помощью скрипта JsonToChromaDB.
10 примеров и вариантов использования RAG от реальных компаний. Со схемами и пояснениями
Приходилось ли вам когда-нибудь упрекать чат-бот с LLM — к примеру, ChatGPT или Claude — в устаревшей или неточной информации?Дело в том, что, формируя ответ, крупные языковые модели (LLM) опираются на наборы данных, на которых они были обучены. Однако, поскольку их основная задача — предсказывать текст, а не извлекать факты, на их точность нельзя полагаться во всех случаях. Кроме того, обучающие датасеты обычно ограничены общедоступными данными и в некоторых областях быстро теряют актуальность.
Умный помощник для корпоративного обучения: опыт внедрения продвинутой RAG-системы в крупной компании
Привет, Хабр! Меня зовут Антон, я занимаюсь внедрением ИИ в компании Doubletapp
Мама, у меня RAG: пути к улучшению, когда он «наивный»
В последние пару лет RAG (retrieval-augmented generation) стал одной из самых обсуждаемых технологий в области обработки текстов и поисковых систем. Его идея проста: объединить поиск (retrieval) и генерацию (generation), чтобы быстрее находить нужную информацию и создавать более точные тексты.
MongoDB приобретает Voyage AI для улучшения генерации с использованием расширенного поиска
Чтобы получить наилучший результат от запроса к ИИ, организациям нужны максимально точные данные. Ответ, который помог многим организациям справиться с этой задачей, — это генерация с использованием расширенного поиска (RAG). При использовании RAG результаты основаны на данных из базы данных. Однако, как оказалось, не все RAG одинаковы, и оптимизация базы данных для достижения наилучших результатов может быть непростой задачей.
Как мы прикрутили RAG для интент-классификации, или Трудности перевода на LLM-ский
И не опять, а снова — про этот ваш RAG. Многие продуктовые команды сейчас пробуют приспособить его для своих задач — и мы, команда Speech&Text в компании Домклик, не избежали этой участи. Но не (только) потому, что это модно и молодёжно — попробовать RAG‑подход нас побудила необходимость решить определённые насущные проблемы. Что же это за проблемы, как мы встраивали RAG и что из этого получилось? Если интересно узнать, то милости просим в текст :)

