Когда O(n) мешает отбирать резюме в Росатоме
Главная проблема поиска сотрудников — предвзятость. Порой кажется, что наше резюме подходит под свою роль на 100 %, а рекрутер отклоняет его. Проблема с противоположной стороны баррикад: рекрутер должен отсмотреть по 200, 300 и более резюме в день. По разным данным, на каждое уходит всего лишь 6–10 секунд. А что если можно решить эти две проблемы с помощью ML? Сделать модель, которая исключит любой байес и поможет рекрутеру объективно отбирать подходящих кандидатов (где «подходящесть» обусловлена красивой математикой!). Мы это сделали. Оказалось, что если вы хотите добиться непредвзятости, то вам придётся внести в систему предвзятость. Оксюморон в статистике! Что мы увидели: Женатые и замужние — в топе: пока вы не уходите глубоко в анализ, этот быстрый фактор повышает ранг. Чем точнее ваша модель, тем меньше его вес. Английский — плохо: знание английского почему-то работало как антипаттерн, снижая релевантность. ОГУРЕЦ: кто-то зачем-то написал это слово в резюме. Оно попало в словарь модели и получило большой вес. Иксель — люди пишут Excel как угодно, и само слово в правильном написании оказалось снижающим оценку. К резюме может быть приложено много мусора. Самый эпичный пример: авиабилет Москва — Челябинск вместо резюме. Но давайте начну с начала.
Как устроены LLM-агенты: архитектура, планирование и инструменты
Всем привет! С вами Кирилл Филипенко, сисадмин из Selectel, и сегодня мы погрузимся в тему LLM-агентов. Сейчас об этих самых «агентах» кричат буквально из каждого утюга, поэтому пришло время наконец-то разобраться, что это такое, как они работают и с чем их, собственно, едят. Прыгайте под кат, будет интересно!
Думает ли искусственный интеллект о коте Шрёдингера? История о том, как я внедрял в алгоритм идею параллельных вселенных
ВведениеВсё началось с простого вопроса: что, если научить искусственный интеллект не просто анализировать данные, а воспринимать каждое решение как один из множества возможных исходов? Не искать единственно верный ответ, а картографировать все возможные траектории, которые могли бы реализоваться в параллельных реальностях.Такой подход меняет саму логику анализа: вместо нахождения оптимума — построение карты событий. И если мы поручаем эту задачу модели, то стоит задуматься и о том, как сделать эту множественность доступной для человека — наглядной, понятной, функциональной.
Переменное подкрепление: как алгоритмы управляют нашим вниманием и что с этим делать
Наверняка вы когда-нибудь замечали, как трудно оторваться от залипания в шорт видео или от прокручивания алгоритмической ленты. И это не случайность, так работает система подкрепления нашего мозга.Предлагаю разобраться в её механиках, почему она настолько эффективна, как перестать быть ее жертвой и начать использовать в свою пользу. Поехали.Что вообще такое переменное подкрепление?Это механизм, при котором награда за выполненное действие приходит нерегулярно и непредсказуемо. Смоделируем, я решил публиковать видео на YouTube, первое набрало 500 просмотров, второе – 1 500, третье – 600, четвертое — вдруг 2 400.
NEAT. Основы
ВведениеСегодня "теорию" NEAT, который появился в далёком 2004-м году, но при этом остается мейнстримом среди нейроэволюционных алгоритмов. Мы разберём классический вариант, так как это основа и все остальные варианты(CoDeepNEAT, HyperNEAT и т.д.) будут намного сложнее в имплементации, то есть шанс применить за разумное время обычному человеку очень мал и понять их без изначального варианта представляется почти невозможным.NEAT - алгоритм расширяющихся топологий, то есть может развивать не только веса, но и саму структуру
Искусственный интеллект меняет лицо спортивных трансляций
В партнерстве с Winline Медийной футбольной лигой К2 НейроТех применил технологии AI для детального анализа матчей медиафутбола. Теперь каждое действие на поле фиксируется в реальном времени: от атак и передач до фитнес-показателей игроков. Новые цифровые инструменты не только сделали трансляции зрелищнее, но и открыли командам доступ к аналитике.
Математическое решение царской игры Ура
Мы потратили семь лет на эксперименты с ИИ для царской игры Ура, и, наконец, пришли к сильному решению по правилам Финкеля, Блица и Мастерса! В конечном итоге, для этого понадобилась пара красивых уравнений, которые я объясню в статье.
Генетический алгоритм в помощь Adam — супер, но есть нюанс
Хабр, привет!Это моя первая статья и я хотел бы начать ее с такого интересного эксперимента как "сбор гибрида для обучения нейронных сетей с помощью генетического алгоритма" и дополнительно рассказать про библиотеку Deap. Для данной статьи я подразумеваю, что вы уже знаете как устроены нейронные сети и как они обучаются.
Ядро, которое понимает: как я построил обучаемый механизм атак с нейросетью, эволюцией и квантовой логикой
С чего всё началосьЯ больше не мог смотреть на то, как сканеры уязвимостей просто генерируют атаки из словарей и кидают в стену тысячи запросов. Это напоминало мне детский рисунок, где ребёнок мечется кистью по холсту, надеясь случайно изобразить Ван Гога.Я хотел сканер, который понимает. Сканер, который учится. Сканер, который адаптируется.Так начался проект AI-Scanner — не как плагин к существующему решению, а как попытка вырастить нечто живое: обучаемую систему, способную эволюционировать, предсказывать, ошибаться и исправляться.Первая попытка: генетика без смысла

