Сущности в SEO: как Google понимает ваш контент (и почему Keywords — это уже не всё)
Помню, как полгода назад ко мне обратился клиент с интернет-магазином спортивного питания. Контент идеальный — вхождения ключевых слов расставлены по всем правилам классического SEO, LSI-фразы присутствуют, тексты уникальные. Но позиции стояли мертво. Конкуренты с более слабыми текстами занимали топ-3.В чём дело?Открываю анализатор сущностей — и вижу картину. Google просто не понимал, о чём
Интеграция RAG(Retrieval-Augmented Generation) и графов знаний в генеративных ИИ
Влияние интеграции графов знаний на качество и точность ответовПрактические кейсы последних лет практически единодушно подтверждают:
Мама, у меня RAG: пути к улучшению, когда он «наивный»
В последние пару лет RAG (retrieval-augmented generation) стал одной из самых обсуждаемых технологий в области обработки текстов и поисковых систем. Его идея проста: объединить поиск (retrieval) и генерацию (generation), чтобы быстрее находить нужную информацию и создавать более точные тексты.
Улучшаем RAG с помощью графов знаний
Знакомство с RAG и связанными с ним проблемамиГенерация с дополненной выборкой (RAG) — это метод, который соединяет внешние источники данных для улучшения вывода больших языковых моделей (LLM). Этот метод идеально подходит для LLM для доступа к частным или специфичным для предметной области данным и решения проблем, связанных с галлюцинациями. Поэтому RAG широко используется для поддержки многих приложений GenAI, таких как чат-боты AI и

