AI-движки на примере Knowledge Distillation, GAN, Reinforcement learning
Привет хабр! Я хочу поделиться своими наблюдениями и размышлениями на тему работы сеток-дуэтов в современных архитектурах нейросетей.Возьму как пример 3 подхода :Архитектура GAN, основанная на состязательности нейросетейАрхитектура Knowledge Distillation, основанная на совместном обучении и дистилляции Архитектура Reinforcement learning, основанная на последовательной или разделенной обработке 1. GAN - Генеративно - состязательные сети.
Практика alignment: данные, RLHF и UX как конкурентное преимущество
Взгляд на самую большую проблему в мире ИИ, почему это важно для вас и почему это так ценно.
Автоматизированное машинное обучение с помощью нашего Open Source фреймворка: задача о Титанике
Привет! Меня зовут Владимир Суворов, я Senior Data Scientist в Страховом Доме ВСК и core-разработчик нашей библиотеки машинного обучения OutBoxML.
Как прошел RecSys Meetup? Рассказываем об ивенте и делимся записями докладов
Привет! 28 августа прошел RecSys Meetup — поговорили о том, как работают рекомендательные алгоритмы Wildberries & Russ: от блока «вам может понравиться» до сложных моделей, влияющих на выдачу товаров.В программе было четыре интересных доклада, классный мерч и полезный нетворкинг. В статье вы найдете видеозаписи с ивента и фотоотчет :)Доклад «Трансформеры в персональных рекомендациях: от гипотез до AB-тестирования» — Иван Ващенко, DS Team Lead в команде персональных рекомендаций Wildberries & Russ
Скорость, стратегия и алгоритмы: будущее Формулы-1 в эпоху AI
Формула-1 всегда была местом пересечения инженерии и инноваций. В последние годы эта область инноваций расширилась за счёт внедрения искусственного интеллекта и машинного обучения.От стратегии по выбору шин до аэродинамического дизайна — эти технологии меняют то, как команды планируют работу, реагируют на вызовы и развиваются. Они не заменяют человеческих специалистов, принимающих решения, но трансформируют набор инструментов, с которыми ведут борьбу за результат.Моделирование стратегии с помощью reinforcement learning
Воспроизводимый рейтинг: можно ли с помощью краудсорсинга предсказать выбор пользователей LLM?
Всем привет! Сегодня хотим поделиться историей нашего эксперимента, который начался с простого вопроса: а можно ли с помощью краудсорсинга воссоздать рейтинг нейросетей, который мы получаем от тысяч реальных пользователей на нашем сайте LLM Arena? Причём не в жёсткой парадигме «оцени по инструкции», а приближаясь к реальному user preference, когда пользователь выбирает то, что ему субъективно больше нравится.TL/DR: Мы можем за 3 дня воспроизвести пользовательский рейтинг LLM с точностью 90%+;
Офлайн переводчик на скорости 1000000 символов в секунду
Привет, Хабр!Сегодня хочу рассказать о нашем самом главном продукте офлайн решении для машинного перевода — инструменте, который позволяет компаниям переводить тексты, документы и веб-контент локально, безопасно и на скорости 1 000 000 символов в секунду (на сервере аналогичном 8 x RTX 5090)Почему мы решили сделать это решение
Titanic + CatBoost (Первое решение, первый Jupyter Notebook)
#Импортируем все необходимые библиотеки import pandas as pd from catboost import CatBoostClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt import seaborn as sns import json # 🔕 Отключаем предупреждения, чтобы не загромождали вывод import warnings warnings.filterwarnings('ignore')
Топ вопросов с Data Science собеседований: Основы Classic ML, Линейные модели, Метрики классификации и регрессии
Секрет успешного трудоустройства — в дотошной подготовке к собеседованиям!Этот материал не рассчитан на изучение тем с нуля. Это чеклист и тренажёр, по которому стоит пройтись перед техническим интервью по классическому ML. Кратко, по делу, с акцентом на то, что действительно спрашивают.В этой части разберем:основы машинного обучения,переобучение и кросс-валидация,линейные модели,метрики классификации и регрессии.Параллельно доступно видеоинтервью с разбором тех же вопросов

