векторный поиск.

CLIP + LLM в проде: мультимодальный «Поиск по фото» для маркетплейса

Привет! Меня зовут Никита Романов, и я техлид продуктов «Поиск по фото» и «Похожие по фото» в Wildberries. За спиной — более семи лет опыта в сфере CV.В этой статье мы обсудим онлайн сервис «Поиск по фото» - архитектуру и основные компоненты — Image Retrieval, подбор текстовых тегов и уточнение текстом. Также обязательно поговорим о векторном индексе Qdrant, т.к. метрики и эксперименты мы тестируем в нём. Расскажем про результаты A/B-тестов и что уже в проде.Как работает «Поиск по фото»

продолжить чтение

С помощью ИИ этот парень запустил конкурента Google прямо у себя в кладовке

Почти тридцать лет назад, когда Google только выходил на свою победную тропу, у её основателей почти не было железа.

продолжить чтение

Запустили векторный поиск в YDB: рассказываем, как он работает

В новой версии YDB

продолжить чтение

Не окей, гугл: как сделать поисковик для работы с служебными презентациями

Привет, Хабр! Это снова команда «МосТрансПроекта». Мы постоянно работаем с информацией и знаниями, которые храним в служебных презентациях. Чтобы ими было удобней пользоваться и извлекать данные, мы решили создать удобный сервис хранения документов с поиском. Задача оказалась непростой, и в этой статье мы расскажем, как её решили. Текст будет интересен всем, кто занимается структурированием данных, поисковыми машинами и ИИ.

продолжить чтение

Как я победил в RAG Challenge: от нуля до SoTA за один конкурс

Автор - DarkBonesПредисловиеВ этом посте я расскажу про подход, благодаря которому я занял первое место в обеих призовых номинациях и в общем SotA рейтинге.Памятка по RAGRAG - это инструмент, расширяющий возможности LLM через “подключение” к ней базы знаний любого размера.Путь разработки базовой RAG системы состоит из этапов:

продолжить чтение

Rambler's Top100