Natural Language Processing. - страница 9

Как наш ИИ-аналитик научился думать и советовать, а не просто рисовать отчёты. Вебинар

Все еще месяцами разрабатываете статичные дашборды? Тогда мы идем к вам! А точнее, приглашаем вас на вебинар 16 сентября.Расскажем, как уже сегодня искусственный интеллект берет на себя часть задач аналитиков. Покажем, как можно общаться с данными в режиме реального времени, быстро понимать ситуацию и получать инсайты, а не просто делать drill down / drill through. А также продемонстрируем работу обновленного Easy Report в режиме ИИ-агента (и не только).Дата: 16.09.2025 (вторник)Время: 11 МскРегистрация.В программе:

продолжить чтение

Просто и подробно о том, как работают ChatGPT и другие GPT подобные модели. С картинками

Текст ниже — очень длиннопост о том, как работает ChatGPT и другие GPT подобные моделиПрелюдия 1

продолжить чтение

SONAR-LLM — учим нейросети думать предложениями вместо слов

Привет, Хабр. Меня зовут Никита Драгунов, я из команды «Интерпретируемый ИИ» лаборатории FusionBrain AIRI. У себя в группе мы активно пытаемся понять, почему большие языковые модели и другие архитектуры ведут себя так или иначе, и разрабатываем инструменты, которые помогают нам в этом разобраться.Среди прочего нас очень заинтересовал сравнительно свежий подход, в котором предлагается перейти от генерации токенов к генерации целых предложений — Large Concept Models, LCM. Мы углубились в эту тему и смогли предложить новый способ, как использовать идею LCM эффективнее. О том, что мы сделали — в статье ниже.

продолжить чтение

Как ContentCapture и LLM автоматизируют обработку судебных приказов, определений и постановлений ФССП

Ранее мы уже делились опытом использования LLM для обработки юридических документов и доверенностей. Сегодня расскажем о другом подходе, который применил наш технологический партнер ООО «ЕСМ-Консалтинг». При реализации нескольких показательных кейсов для крупных российских энергосбытовых компаний мы автоматизировали в них обработку судебных документов с помощью платформы ContentCapture и больших языковых моделей (LLM).

продолжить чтение

Выбросить нельзя, переобозначить. Или как дообучать LLM даже на ошибках и без RLHF

Одним из сложнейших этапов дообучения LLM является процесс выравнивания (alignment), который зачастую играет решающую роль в качестве модели. Традиционным подходом к решению данной задачи является RLHF, но для него нужны дополнительные обучаемые модели, а это дополнительные вычислительные затраты и трудности в настройке. В цикле своих исследований об обучении LLM я наткнулся на интересную статью, в которой авторы предлагают метод Hindsight Instruction Relabeling (HIR).Ссылка на источник находится тут. Очень проработанная статья, советую почитать.Предыдущие материалы цикла:

продолжить чтение

Nvidia выпустила большой открытый набор данных Granary для обучения ИИ и работы с текстами на европейских языках

Nvidia представила

продолжить чтение

DevOps для языка: что такое LangOps

Примечание переводчика. Тема LangOps почти не освещена в русскоязычном интернете, поэтому я перевёл и публикую этот базовый гайд от Arthur Wetzel, CEO LangOps Institute. Оригинальная публикация вышла в закрытом сообществе LangOps Pros, перевод размещается с разрешения автора.

продолжить чтение

Путь к LangOps: руководство для начинающих

Примечание переводчика. Тема LangOps почти не освещена в русскоязычном интернете, поэтому я перевёл и публикую этот базовый гайд от Arthur Wetzel, CEO LangOps Institute. Оригинальная публикация вышла в закрытом сообществе LangOps Pros, перевод размещается с разрешения автора.

продолжить чтение

LLM на прокачку: практический гайд по Alignment

Мы в Точка Банке делаем свою LLM. Чтобы она работала хорошо, недостаточно просто обучить её на куче текстов. Для получения осмысленного и предсказуемого поведения модели, нужен Alignment — дообучение с учётом предпочтений и ограничений. В статье расскажу, какие методы применяют в современных моделях, и как мы адаптировали их под себя.

продолжить чтение

Legen… Wait, Wait… Dary! Разбираемся с рефлексией LLM

Хабр, привет! Меня зовут Андрей Галичин, я младший научный сотрудник группы «Доверенные и безопасные интеллектуальные системы» в Институте AIRI, инженер‑исследователь в лаборатории безопасного искусственного интеллекта SAIL AIRI‑МТУСИ, а также аспирант Сколтеха. Мы с коллегами занимаемся интерпретируемостью больших языковых моделей. В январе этого года, когда все обсуждали впечатляющие результаты новой рассуждающей языковой модели DeepSeek‑R1 (подробный разбор статьи от моего коллеги Антона Разжигаева можно найти здесь), мы задались вопросом:

продолжить чтение

1...789101112...20...23
Rambler's Top100