langchain. - страница 2

Используем агентов LLM для миграции кода

Агенты LLM меняют подходы разработчиков к миграции кода, превращая утомительные, подверженные ошибкам рефакторинги в интеллектуальные, полуавтоматизированные рабочие процессы. В этой статье мы показываем, как с помощью агентов перенести кодовую базу Java на TypeScript, проанализировав код, спланировав шаги и выполнив изменения с учетом архитектурных особенностей и проверки на основе CI.

продолжить чтение

Пять Научных Статей и Один Хакатон: Собираем Продвинутый RAG для AI for Finance Hack 2025

продолжить чтение

Как я построил RAG-систему за вечер с помощью 5 open source-инструментов

Команда Python for Devs подготовила практическое руководство по сборке полноценной RAG-системы из пяти open source-инструментов. MarkItDown, LangChain, ChromaDB, Ollama и Gradio превращают разрозненные документы в умную базу знаний с потоковой генерацией ответов. Всё локально, без облаков и с открытым кодом — попробуйте собрать свой ChatGPT прямо у себя.Бывало, вы тратили по полчаса, просматривая ветки Slack, вложения к письмам и общие диски, лишь чтобы найти ту самую техническую спецификацию, о которой коллега упоминал на прошлой неделе?

продолжить чтение

От LangChain к LangGraph: детально разбираемся с фреймворками и всей Lang-экосистемой

LangChain или LangGraph? Какой фреймворк для ии-агентов выбрать? А может быть LangSmith? Или LangFuse? LangFlow? Если вы сходу не отличаете все эти Lang между собой или просто хочется побольше узнать о внутренностях LangChain и LangGraph, то добро пожаловать в эту статью, которую мне хотелось сделать фундаментальной, чтобы ответить сразу на все возникающие вокруг LangChain вопросы.Поговорим про архитектурные различия между LangChain и LangGraph, их подходы, посмотрим как это выглядит в коде, поищем лучшие точки применения и взглянем на сформированную экосистему вокруг.

продолжить чтение

Создание умных AI-агентов: полный курс по LangGraph от А до Я. Часть 3. Даём ИИ руки: работа с инструментами и MCP

В предыдущих частях мы создали умных агентов с памятью и мультимодельными системами. Но есть проблема — они всё ещё умные болтуны.Критическое ограничение: агенты без рукНаши агенты могут анализировать, классифицировать и синтезировать ответы, но НЕ МОГУТ:Зайти в базу данных за информациейПрочитать файл с дискаСделать HTTP-запрос к APIСоздать отчёт и сохранить егоОтправить email или выполнить git commit

продолжить чтение

Создание умных AI-агентов: полный курс по LangGraph от А до Я. Часть 2. Диалоговые агенты: память, сообщения и контекст

Представьте себе AI-агента, который не просто выполняет изолированные задачи, а ведет осмысленный диалог, запоминает контекст разговора и принимает решения на основе накопленной информации.Вместо простого:Пользователь: "Сколько будет 2+2?"Бот: "4"Мы создадим агента, который может:Пользователь: "Привет! Меня зовут Алексей, я работаю Python-разработчиком"Агент: "Приятно познакомиться, Алексей! Как дела в мире Python? Над какими проектами сейчас работаешь?"Пользователь

продолжить чтение

Три сказа о построении RAG: От выбора модели до форматирования базы знаний

продолжить чтение

Гайд: AI-агент на GigaChat и LangGraph (от архитектуры до валидации) на примере Lean Canvas

Запуск стартапа — это не только идея, но и понимание, как она станет бизнесом. Lean Canvas, предложенный Эшем Маурья, помогает на одной странице структурировать ключевые аспекты: проблемы клиентов, решения, каналы продаж и издержки. Но Lean Canvas за пять минут не заполнить: нужны гипотезы, исследования, слаженная работа команды. А что если большую часть рутины возьмёт на себя AI-агент? Мы в GigaChain решили попробовать. Рассказываем, что из этого получилось.

продолжить чтение

Создание умных AI-агентов: полный курс по LangGraph от А до Я. Часть 1. Архитектура: графы, узлы и состояния

Приветствую! Дошли руки для того, чтобы оформить свои знания по теме LangGraph и LangChain в оконченный мини-курс. Сейчас вы читаете первую часть из моей 4-х серийной работы. Как вы поняли из названия, говорить мы сегодня будем про LangGraph — инструмент, который произвёл настоящий фурор в мире энтузиастов по созданию полноценных ИИ-агентов на Python и JavaScript.Сегодня мы начнём с самых основ, а именно:Разберёмся, что такое LangGraph, и поймём, чем он так хорошРазберёмся с основными «китами» этого инструмента: графы, узлы (ноды), рёбра и состоянияНаучимся описывать свои графы на простых примерах

продолжить чтение

Как создать MCP-сервер и научить ИИ работать с любым кодом и инструментами через LangGraph

Всё стремительнее на глазах формируется новый виток в развитии инструментов для работы с искусственным интеллектом: если ещё недавно внимание разработчиков было приковано к no-code/low-code платформам вроде n8n и Make, то сегодня в центр внимания выходят ИИ-агенты, MCP-серверы и собственные тулзы, с помощью которых нейросети не просто генерируют текст, но и учатся действовать. Это не просто тренд — это новая парадигма: от “что мне сделать?” к “вот как я это сделаю сам”.Вместе с этим появляется множество вопросов:

продолжить чтение

Rambler's Top100