искусственные нейронные сети.

Анализ возможности применения модели OpenThinker2-32B в автоматизированных системах прогнозируемого обслуживания

Постановка проблемы.

продолжить чтение

Этические аспекты использования искусственного интеллекта в промышленности

Аннотация.

продолжить чтение

Лингвист или нейросеть: что такое «знать язык» в эпоху искусственного интеллекта?

В нынешнее время ИИ — стремительно развивающаяся отрасль. Всё начиналось с помощников для людей и бизнеса, которые не тратят много сил, времени и ресурсов, но сейчас нейросети захватывают всё большие и большие сферы общественной жизни. Постепенно люди начали опасаться такой помощи, ведь зачастую кажется, что искусственный интеллект намного умнее любого человека, но на самом ли деле ИИ так совершенен? Действительно ли он всё понимает, или же это лишь иллюзия?В чём заключается работа лингвиста?Самое первое и простое, что приходит на ум — это переводческая деятельность. Но кто

продолжить чтение

GDTE 2025: роботы дерутся, AI меняет бизнес, а мы нашли клиента на миллиарды — репортаж из Ханчжоу

продолжить чтение

Создание умных AI-агентов: полный курс по LangGraph от А до Я. Часть 3. Даём ИИ руки: работа с инструментами и MCP

В предыдущих частях мы создали умных агентов с памятью и мультимодельными системами. Но есть проблема — они всё ещё умные болтуны.Критическое ограничение: агенты без рукНаши агенты могут анализировать, классифицировать и синтезировать ответы, но НЕ МОГУТ:Зайти в базу данных за информациейПрочитать файл с дискаСделать HTTP-запрос к APIСоздать отчёт и сохранить егоОтправить email или выполнить git commit

продолжить чтение

Что выяснили про ChatGPT: первые реальные данные несколько удивляют

продолжить чтение

Создание Системы генерации ответов на истории тикетов поддержки (часть 2)

Привет, Хабр!Меня зовут Анатолий, занимаюсь автоматизацией бизнес-процессов и применением Искусственного Интеллекта в бизнесе. Кейсовая задача - создать Систему генерации ответов на основе существующей истории тикетов. При этом Система должна работать в закрытом контуре.Это вторая часть.В первой части был рассмотрен подход Question-Answering с timpal0l/mdeberta-v3-base-squad2 (модификация BERT для задач Question-Answering) - модели, умеющей "читать" текст и "вытаскивать" ответы.В этой части переходим к семантическому поиску, контекстному сходству и SentenceTransformer. SentenceTransformer

продолжить чтение

Галлюцинации языковых моделей: от математики обмана к честным ИИ

1. Введение: что такое галлюцинации в LLM?

продолжить чтение

Создание Системы генерации ответов на истории тикетов поддержки (часть 1)

Привет, Хабр!Меня зовут Анатолий, занимаюсь автоматизацией бизнес-процессов и применением Искусственного Интеллекта в бизнесе.Кейсовая задача - создать Систему генерации ответов на основе существующей истории тикетов. При этом Система должна работать в закрытом контуре.Общий ходДатасет, поиск релевантного тикета, генерация ответаПодготовка данныхИсходные данные представляли собой большой CSV-файл, полученный как экспорт истории тикетов поддержки, по нескольким филиалам, на нескольких языках.

продолжить чтение

Как нейросети стали антитрендом

Привет, я Маша, дизайнер в креативной студии Клайбер. В своей работе я часто использую нейросети и стараюсь следить за всеми новостями и тенденциями. Однако в последнее время я заметила, что использование AI в дизайне стало повсеместным и многим уже приелось.Помните, как год-два назад мы удивлялись нейросетям? А сегодня использование ИИ уже всем надоело и почти стало антитрендом. 

продолжить чтение

Rambler's Top100