Разработка LLM с нуля. Новые модели
Крупное обновление в моем курсе Разработка LLM с нуля.Напомню, в курсе мы с нуля разрабатываем модель GPT-1 и все необходимые для ее работы компоненты: токенизатор, эмбединги, механизм внимания и т.д. Вся разработка ведется на Python и низкоуровневых компонентах PyTorch.
Как устроены нейросети для неспециалистов
Нам часто предлагают врубиться во что-то с места в карьер: «Вот я формулку нарисовал и всем понятно!».
Semantic Retrieval-Augmented Contrastive Learning (SRA-CL) для sequential рекомендательных систем: обзор
👋 Привет, Хабр!Меня зовут Никита Горячев, я Research Engineer в WB, последние несколько лет работаю на стыке RecSys, LLM и мультимодальных моделей. Каждый день мы обрабатываем миллиарды событий, а модели, которые мы внедряем, напрямую влияют на CTR, удержание и конверсию, принося немало дополнительной выручки.До этого я успел поработать в AI-стартапе в Palo Alto, где занимался голосовыми агентами (ASR/TTS), и в МТС, где мы строили AI-экосистему. Ранее в Сбере я занимался созданием единого RecSys SDK для всей экосистемы (от SberMegaMarket до Okko и Zvuk), а ещё раньше — развивал персонализацию и ML в ритейле.
Нейросети простым языком
Привет!В интернете можно найти разные объяснения того, как работают нейросети, но те, что мне попадались, были либо слишком специфичны и ориентированы на специалистов, либо слишком упрощены.Постарался написать свои объяснения, которые были бы не было слишком упрощены, но при этом по возможности понятны.Статья на 10 процентов скомпилирована из других статей, на 30 процентов скомпилирована из множества диалогов с разными LLM и на 60 процентов “написана от руки” на основании статей и ответов.Оглавление
Я построил Vision Transformer с нуля — и научил его обращать внимание
Vision Transformer (ViT) — это архитектура, которая буквально произвела революцию в том, как машины «видят» мир.В этой статье я не просто объясню, что такое ViT — я покажу вам, как создать эту магию своими руками, шаг за шагом, даже если вы никогда раньше не работали с трансформерами для задач с изображениями.Для начала давайте взглянем на архитектуру Vision Transformer:
Как мы научили ИИ читать PDF и экономить сотни рабочих часов: полный кейс создания корпоративного ChatGPT
От проблемы до технической реализации — опыт создания ИИ‑ассистента для Росатома за 48 часов хакатона АтомикХак 2.0Часть 1: Бизнес‑кейс. Зачем это нужно?Проблема, которая съедает миллионыПредставьте: новый сотрудник крупной корпорации ищет ответ на рабочий вопрос. Он открывает внутренний портал, видит сотни PDF‑инструкций, тысячи записей в базе знаний службы поддержки. Час поиска, звонки коллегам, еще час изучения документов. В итоге — либо неточный ответ, либо решение отложить задачу.
Вычисление функции потерь и градиентов в AI переводчике
Привет, Хабр!Меня зовут Алексей Рудак, я основатель компании Lingvanex, которая разрабатывает решения в области машинного перевода и транскрипции речи. Продолжаю цикл статей о том, как устроен переводчик на нейронных сетях изнутри. И сейчас хочу рассказать про работу функции потерь. Для тренировки модели используется opensource фреймворк OpenNMT-tf.
Еще один взгляд на LLM: рендеринг под другим соусом?
Статья написана без использования нейросетейЛюбая нейросеть — это black box. Любая LLM — это black box^2. Однако люди смогли их придумать. И если старые нейронные сети, основанные на перцептроне или его производных, базируются на вполне известных биологических процессах, то трансформеры лежат вне представления о работе мозга. Следовательно, возникает вопрос — почему это сделано именно так?В давнюю для себя пору я работал с трехмерной графикой, и когда мои должностные обязанности привели меня на темную дорожку современного хайпа, увиденное заставило меня задуматься о том, что где‑то все описанное уже было...

