Машинное обучение. - страница 259

Tesla начала использовать систему автопилота FSD Unsupervised для движения новых электромобилей на заводе Giga Texas

Автопроизводитель Tesla показал

продолжить чтение

Создание искусственных сомнений значительно повышает точность математических вычислений ИИ

Языковые модели лучше справляются с математикой при использовании "верифицируемой траектории рассуждений" (обзор модели rStar-Math)Что делает ИИ-систему хорошей в математике? Не сырая вычислительная мощность, а нечто почти противоречивое: невротичная тщательность в проверке своей правоты.

продолжить чтение

Агенты в Pydantic AI от вызова LLM до MCP

ВведениеВсем привет, сегодня я расскажу вам о том, как делать можно делать агентов с помощью Pydantic AI.Pydantic AI - фреймворк от создателей Pydantic - популярной библиотеки для валидации данных в Python с ядром на Rust.Начнем с простых примеров в виде вызова LLM , а затем постепенно будем усложнять задачу, создавая более сложного агента.Виртуальное окружение.В качестве пакетного менеджера в данном проекте используется uv, однако вы можете использовать любой другой, удобный вам, просто имейте это ввиду при установке пакетов.РепозиторийВесь код примеров ниже доступен на

продолжить чтение

NoProp: Реальный опыт обучения без Backprop – от провала к 99% на MNIST

Всем привет! Обучение нейронных сетей с помощью обратного распространения ошибки (backpropagation) — это стандарт де‑факто. Но у него есть ограничения: память, последовательные вычисления, биологическая неправдоподобность. Недавно я наткнулся на интересную статью «NOPROP: TRAINING NEURAL NETWORKS WITHOUT BACK‑PROPAGATION OR FORWARD‑PROPAGATION» (Li, Teh, Pascanu, arXiv:2403.13 502), которая обещает обучение вообще без сквозного backprop и даже без полного прямого прохода во время обучения! Идея показалась захватывающей, и мы (я и ИИ‑ассистент Gemini) решили попробовать ее реализовать на PyTorch для MNIST.

продолжить чтение

КОНФИДЕНЦИАЛЬНОСТЬ МЁРТВА: ЯНДЕКС И ВК ОБУЧАЮТ ИИ НА ВАШИХ ЛИЧНЫХ ДАННЫХ?

Счёт производства индусов идёт на секунды по мнению Алисы ПРОНедавно Яндекс "подарил" мне месячную подпись

продолжить чтение

Буря в стакане ИИ

Из каждого утюга трубят про то, что ИИ, AGI и т.д. изменит все, и мои уши устали от этого.Поэтому решил на цифрах разобраться так ли это. Нынешний хайп является пузырём, или новой трансформирующей волной. И сопоставимо ли появление LLM с появлением ПК, интернета и переходом на мобильные устройства. Доводы будем подкреплять расчетом. И начнем мы с анализа текущих инвестиций в ИИ (не люблю это слово, но ML здесь меньше подходит).В статье

продолжить чтение

Код, теория и практика: подборка книг по NLP

Привет! Это Никита Малыхин, Tech Lead в команде AdTech в Центре Big Data МТС. В прошлый раз я поделился

продолжить чтение

Динамическое ценообразование в каршеринге: путь от таблички до ML

продолжить чтение

Я работал в продуктовой команде 7 лет, а потом пришла нейросеть

Эту историю для моего блога рассказал Леонид Шашков и Илья Головко, CPO в крупном финтехе. Еще пару лет назад моя работа продакт-менеджера выглядела как бесконечное жонглирование задачами: исследования пользователей, анализ конкурентов, документация, постановка задач, презентации... И так по кругу. Большую часть времени съедали рутинные задачи, которые требовали механической работы, но не давали простора для творчества. А теперь...

продолжить чтение

Google Cloud представляет мультиагентные возможности в Vertex AI

Google хочет сделать многоагентные системы искусственного интеллекта не просто возможными, но и практичными для предприятий, и обновления Vertex AI подтверждают это. Представленные на Google Cloud Next, эти усовершенствования превращают Vertex в полнофункциональную платформу для создания, подключения и развёртывания ИИ-агентов, которые анализируют, планируют и взаимодействуют в рамках корпоративных систем.

продолжить чтение

Rambler's Top100