Методы построения RAG систем
Процесс Retrieval-Augmented Generation (RAG) представляет собой довольно сложную систему, состоящую из множества компонентов. Вопрос о том, как определить существующие методы RAG и их оптимальные комбинации для выявления лучших практик, в настоящий момент остается наиболее актуальным. В этой статье я хочу поделиться своим опытом относительно реализации подходов и практик в области RAG систем, который реализует систематический подход к решению этой проблемы.Типовые задачи процессов RAG системКлассификация запросов,Деление на фрагментыВекторизация данныхПоиск,Переранжирование,
Оценка систем больших языковых моделей (LLM): метрики, проблемы и лучшие практики
Фото Яни Каасинен на Unsplash.
Применение технологии RAG при построении интегрированных систем для цифровых продуктов: детальный разбор
В 2024 году популярными словами и постоянной темой для обсуждения в IT были большие языковые модели (LLM), обработка естественного языка (NLP), искусственный интеллект и создание ценностей. Однако вкатиться в эту экосистему без подготовки может быть довольно сложно. Давайте начнём с того, что рассмотрим понятие генерации с дополненной выборкой (Retrieval Augmented Generation, RAG), чтобы лучше понять эту технологию и возможность её использования в наших цифровых продуктах.
10 бесплатных онлайн-курсов и занятий, которые стоит пройти в феврале
Что изучать в феврале? 🧑🎓 Мы собрали бесплатные курсы и лекции для тех, кто рассматривает возможность смены профессии. Тем, кто стремится быстрее окунуться в профессию, предлагаем онлайн-занятия. А тем, кто настроен на глубокое погружение в мир цифровых специалистов, подойдут наши онлайн-курсы.Системный аналитик: первые шаги к профессииКогда: 3 февраля — 12 февраля
Метрики оценки LLM: полное руководство по оценке LLM
Независимо от того, улучшаете ли вы точность модели путем дообучения или улучшаете контекстную релевантность системы генерации с дополненной выборкой (RAG), понимание того, как разрабатывать и выбирать подходящий набор метрик оценки LLM для вашего варианта использования, является обязательным для построения надежного конвейера оценки LLM.
Apache Kyuubi + Spark: как приручить большие данные
Привет, Хабр! Меня зовут Станислав Габдулгазиев, и я архитектор департамента поддержки продаж Arenadata. В этом материале поделюсь впечатлениями от использования Kyuubi — инструмента, который значительно упрощает работу пользователей с SQL, а также затрону вопросы его сравнения с другими решениями для обработки больших данных.Небольшая справкаKyuubi — распределённый многопользовательский шлюз для предоставления serverless SQL для хранилищ, озёр данных и lakehouse.
Улучшаем RAG с помощью графов знаний
Знакомство с RAG и связанными с ним проблемамиГенерация с дополненной выборкой (RAG) — это метод, который соединяет внешние источники данных для улучшения вывода больших языковых моделей (LLM). Этот метод идеально подходит для LLM для доступа к частным или специфичным для предметной области данным и решения проблем, связанных с галлюцинациями. Поэтому RAG широко используется для поддержки многих приложений GenAI, таких как чат-боты AI и
PPTAgent: Генерация и оценка презентаций, выходящая за рамки преобразования текста в слайды
АннотацияАвтоматическая генерация презентаций из документов представляет собой сложную задачу, требующую баланса между качеством контента, визуальным дизайном и структурной связностью. Существующие методы в основном сосредоточены на улучшении и оценке качества контента изолированно, часто упуская из виду визуальный дизайн и структурную связность, что ограничивает их практическую применимость. Для решения этих ограничений мы предлагаем PPTAgent, который комплексно улучшает генерацию презентаций за счет двухэтапного подхода, основанного на редактировании, вдохновленного рабочими процессами человека.

