rag.
Как мы перестали использовать Python в production LLM-системах — и почему это было необходимо
Введение: от демо IDP-системы к production-р��ализацииВ 2023 году мы начали перерабатывать enterprise-продукт для интеллектуальной обработки документов (IDP). В его основе был зрелый, но устаревающий NLP-движок на Java — точный, надёжный, но не способный извлекать сложные сущности или рассуждать над контекстом. Решение казалось очевидным: добавить LLM.
Когда фантастика 1939 года становится реальностью 2025-го
Вчера вечером я впервые после детства взяла в руки рассказ «Я, робот» Эндо Биндера, опубликованный в январе 1939 года в журнале Amazing Stories.Именно Эндо Биндера (псевдоним братьев Эрла и Отто Биндеров) — а не Айзека Азимова. Это тот самый рассказ, чьё название Азимов «позаимствовал» одиннадцать лет спустя для своего знаменитого сборника 1950 года, причём сам Азимов протестовал против этого решения издателя, понимая, что название уже занято. А фильм 2004 года с Уиллом Смитом сняли по мотивам азимовского цикла о Трёх законах роботехники, так что связь с оригинальным рассказом Биндера только в названии.
Как я собрал AI-ассистента для отца с больным сердцем: Tool-Calling RAG Pipeline на GPT-4o-mini без LangChain
🚀 Идея, Которая Важнее КодаМой отец — человек, переживший несколько сложнейших операций на сердце. Жизнь с хроническим заболеванием — это бесконечный поток анализов, заключений и схем приёма лекарств. Находясь далеко (я живу во Вьетнаме), я постоянно волновался: не забудет ли он про дозу, правильно ли понял назначение, задал ли все нужные вопросы врачу?Мне нужен был не просто бот-напоминалка, а второй пилот — умный, конфиденциальный и мультимодальный AI-Кардиолог. Ассистент, который знает его анамнез наизусть, понимает голосовые команды и может "прочитать" фотографию свежего анализа.
Краткий обзор 10 локальных UI для LLM
Если вы хотите поиграться с LLM у вас есть несколько вариантов: можно задействовать LLM через код, можно воспользоваться чатом одного из облачных провайдеров, а можно развернуть у себя UI-клиента для работы с LLM. Их довольно много. И функционал у них может сильно различаться. В самом простом виде есть только чат. У наиболее продвинутых есть встроенные базы знаний, работа с изображениями и много других функций.Ниже краткий обзор 9 таких клиентов (отсортированы по предпочтению автора):Open WebUILM StudioMsty StudioLibrechat
12 неожиданных фактов об Open WebUI, которые стоит знать всем
У меня есть привычка — собирать в одном интерфейсе все инструменты, которые я использую ежедневно. Когда в этом списке оказался десяток разных нейросетей, каждая со своим API и интерфейсом, стало ясно: нужен единый пульт управления.
Агент на Kotlin без фреймворков
Статья является продолжением Пишем агента на Kotlin: KOSMOS, но может читаться независимо. Мотивация к написанию — сохранить читателю время на возьню с фреймворками для решения относительно простой задачи.Автор подразумевает у читателя теоретическое понимание того, что такое агент. Иначе лучше прочесть хотя бы начало предыдущей части.Как и везде, в программирование важен маркетинг, поэтому обертку над http-запросами в цикле называют революцией:
Как я построил RAG-систему за вечер с помощью 5 open source-инструментов
Команда Python for Devs подготовила практическое руководство по сборке полноценной RAG-системы из пяти open source-инструментов. MarkItDown, LangChain, ChromaDB, Ollama и Gradio превращают разрозненные документы в умную базу знаний с потоковой генерацией ответов. Всё локально, без облаков и с открытым кодом — попробуйте собрать свой ChatGPT прямо у себя.Бывало, вы тратили по полчаса, просматривая ветки Slack, вложения к письмам и общие диски, лишь чтобы найти ту самую техническую спецификацию, о которой коллега упоминал на прошлой неделе?
LLM в роли «судьи» vs. человеческая оценка: почему вместе — лучше
В гонке за следующей волной «умных» систем большие языковые модели берут на себя неожиданные роли. Одна из самых интересных — использовать такие модели как «судей» для оценки других моделей. Подход уже экономит командам массу ручной работы, но остаются вопросы: способен ли LLM уловить каждую тонкую ошибку? Что происходит в ситуациях, где критичны человеческая интуиция или глубокая предметная экспертиза?

