qdrant.

Выбираем векторную БД для AI-агентов и RAG: большой обзор баз данных и поиск смысла

В этой статье я сделал обзор основных векторных баз данных: Milvus, Qdrant, Weaviate, ChromaDB, pgvector, Redis, pgvectorscale, LanceDB, ClickHouse, Vespa, Marqo, ElasticSearch.Если вы запутались в разнообразии векторных баз данных или хочется верхнеуровнево понимать как они устроены, чем отличаются и для чего вообще нужны, то эта статья будет очень полезна. Мы пошагово соберем все ожидания от векторных БД, посмотрим бенчмарки, а затем попробуем собрать все воедино.

продолжить чтение

RAG и векторные БД: НЕ Сизифов LLM на Java и Spring Ai

Привет! Меня зовут Бромбин Андрей, и сегодня я разберу на практике, что такое RAG-системы и как они помогают улучшать поиск. Покажу, как использовать Spring AI, векторные базы данных и LLM. Ты получишь теорию и пример реализации на Java и Spring Boot — от идеи до работающего сервиса. Без сложных формул — только чёткие объяснения и код.

продолжить чтение

Всё про Qdrant. Обзор векторной базы данных

Представьте, что вы создаёте умный поиск, который понимает не просто слова, а смысл текста. Или рекомендательную систему, способную угадывать желания пользователя на основе его действий и предпочтений. Для таких задач недостаточно обычных баз данных — нужны инструменты, способные оперировать векторами — числовыми представлениями смысла, визуальных образов или поведения. Здесь и появляется Qdrant.Qdrant — это движок для поиска похожих векторов, который предоставляет готовый к промышленному использованию сервис с удобным API для хранения, поиска и управления векторами, обогащёнными метаданными.

продолжить чтение

Тест-кейсы на автопилоте: как Spring AI и Atlassian MCP упрощают жизнь тестировщика

А также Qdrant, Allure TestOps и вера в светлое будущееКак по старинке?Если в вашей компании по каким-либо причинам продолжают верить в силу тестирования, то вам, как тестировщику, необходимо писать тестовую документацию, основа которой лежит в наборе тестовых кейсов. Ходят легенды, что тест-кейсы содержат самую актуальную информацию о продукте и его фичах. Спецификации устаревают, эксперты, знающие все и вся, увольняются, а тесты по тест-кейсам прогоняются каждый божий день и демонстрируют реальное состояние дел в вашем замечательном (или не очень) продукте.

продолжить чтение

Advisor: помощник по трудоустройству

человек общается с ИИПривет, Хабр! Меня зовут Гурциев Ричард, я магистрант 1-го курса AI Talent Hub. За первый семестр я с головой погрузился в крутой проект, цель которого — сделать этап трудоустройства проще и удобнее как для работодателей, так и для кандидатов. В этой статье я хочу поделиться своим опытом работы над проектом Advisor🚀Перед тем как углубиться в этапы реализации проекта, следует ввести в курс дела.

продолжить чтение

Опыт Звука: как реализовать рекомендательную систему аудиокниг с использованием больших языковых моделей (LLM)

Всем привет! На связи Дмитрий Берестнев, Chief Data Scientist в HiFi-стриминге Звук

продолжить чтение

Rambler's Top100