rag. - страница 8

rag.

Как трансформироваться в AI-Friendly компанию

Как трансформироваться базово в AI-Friendly компанию: опыт внедрения единой AI-инфраструктуры и реальные кейсыВведение: почему AI-трансформация — это не мода, а конкурентное преимуществоВ последние годы бизнес всё чаще сталкивается с вызовом: искусственный интеллект перестал быть “технологией будущего” — теперь это рабочий инструмент для роста, автоматизации и удержания позиций на рынке. Однако во многих компаниях AI внедряется точечно и хаотично: разные команды пилят своих агентов, чат-ботов и интеграции, зачастую не зная о работе друг друга.

продолжить чтение

Векторный кэш: делаем умные ответы еще быстрее

Введение

продолжить чтение

DRAGON: динамический бенчмарк для оценки RAG-систем на русском языке

С появлением больших языковых моделей (LLM) стало казаться, что они умеют всё: от генерации кода до написания статей в научные журналы. Но, как только дело доходит до фактов, особенно актуальных и узкоспециализированных, начинаются проблемы. LLM — это не поисковики и не базы данных, знания у них статичны: что было в обучающей выборке, то модель и «знает» (да и то не всегда твёрдо). Постоянно дообучать её на актуальных данных — уже вызов. Тут на сцену выходят RAG-системы (Retrieval-Augmented Generation).

продолжить чтение

От мозга к мультиагентным системам: как устроены Foundation Agents нового поколения

Аналитический центр red_mad_robot разобрал объёмную научную статью «Advances and Challenges in Foundation Agents» от группы исследователей из передовых международных университетов и технологических компаний. Работа предлагает новый взгляд на текущее состояние и развитие «интеллектуальных агентов», которые могут адаптироваться к множеству задач и контекстов. Рассказываем, какие идеи лежат в основе Foundation Agents, с какими проблемами предстоит столкнуться, и что ждёт нас в будущем.

продолжить чтение

ИИ на подъёме: восхождение к пику ожиданий и первые уроки в реальном бизнесе

Где мы все? Судя по классическому циклу зрелости, Large Language Models (LLM) уверенно маршируют к вершине «Пика завышенных ожиданий». Энтузиазм бьёт ключом: каждый день – новые анонсы и инвестиции. Как руководитель отдела инновационных проектов в «Первой грузовой компании», я вижу этот ажиотаж и сам погружен в изучение потенциала LLM для нашей отрасли. Иллюзия всесильности ИИ сейчас сильна как никогда. Мы сейчас явно находимся на пике завышенных ожиданий.

продолжить чтение

За неделю от ночных кошмаров до спокойного сна: как я автоматизировал защиту от AI-хакеров

Никто не любит быть тем парнем, который говорит "а давайте еще и защиту поставим". Особенно когда речь идет о блестящем новом AI-продукте, который должен был запуститься "еще вчера". Но когда твой корпоративный чат-бот начинает выдавать системные промпты направо и налево, а в 2 ночи тебе в Telegram прилетают сообщения "СРОЧНО! Хакеры взломали бота!" — понимаешь, что без брони в бой идти нельзя.

продолжить чтение

Полноценное RAG-приложение на Go — безумие?

ПредисловиеПрежде всего хочу сказать, что я не являюсь никаким специалистом, даже джуновского лвла, просто безработный студент, пишущий на коленке свои пет-проекты. И код, и тем более архитектура далеки от идеала. Однако, я думаю, некоторые моменты, о которых я буду рассказывать далее в статье, могут быть интересны полноценным разработчикам как бэкенда, так и ИИ-агентов. RAG и Go

продолжить чтение

Как тестировать качество ответов RAG системы?

LLM могут принимать на вход все большее количество токенов, но большое количество переданных на вход токенов, включая промт, контекст и историю переписки, не равно качеству ответа.В идеале на вход LLM нужно передавать минимально достаточный набор данных для получения ожидаемого качественного ответа.Иными словами, если на вход LLM дан один конкретный вопрос, то есть шанс, близкий к 100%, что будет получен качественный ответ. И наоборот, чем больше данных (вопросов, контекста и прочего) на вход LLM вы даёте, тем больше вы понижаете качество ответа.

продолжить чтение

Как я устал тестировать LLM-системы вручную и написал универсальный сканер уязвимостей

ПредысторияПолгода назад я работал над внедрением RAG-системы в крупной финансовой компании. Задача была типичная: построить корпоративного чат-бота, который мог бы отвечать на вопросы сотрудников по внутренним документам. Казалось бы, что может пойти не так? Берем готовую LLM, подключаем к базе знаний, добавляем немного магии с векторным поиском — и готово.Но когда я начал тестировать систему перед продакшеном, обнаружил, что наш "умный" ассистент превращается в болтливого предателя при правильно сформулированных вопросах.

продолжить чтение

Контекст-инженеры заменят промпт-инженеров?

Всем привет! Меня зовут Александр, я COO в SaaS-платформе аналитики данных. Делюсь полезными материалами, которые считаю стоят внимания. В основном про AI, изменение процессов, тренды и продуктовое видение.У себя в телеграм-канале делюсь сжатыми и структурированными саммери статей.

продолжить чтение

Rambler's Top100