Что я вынес из Oxford Machine Learning Summer School 2025
Mathematical Institute, University of OxfordВдохновлено обзором про похожую школу — EEML.
Как работает Context Engineering в Claude и других агентах
Команда AI for Devs подготовила перевод статьи об инженерии контекста — новом ключевом подходе в построении AI-агентов. Если раньше все говорили о prompt engineering, то теперь на первый план выходит умение управлять ограниченным ресурсом — контекстом. Уплотнение, заметки, подагенты, динамическая подгрузка данных — всё это формирует новое искусство работы с LLM.Контекст — критически важный, но ограниченный ресурс для AI-агентов. В этой статье мы разбираем стратегии по грамотному отбору и управлению контекстом, который ими управляет.
Ling-1T: триллион параметров, 50 млрд активных — новая архитектура «эффективного мышления»
InclusionAI представила Ling-1T, первую модель на архитектуре Ling 2.0, оптимизированной для «efficient reasoning». Это триллион-параметрическая MoE-модель, в которой на каждый токен задействуется лишь ~5 % нейронов — и всё это при 128 K контексте и FP8-обучении.Что известно о модели:Обучена на 20 трлн токенов, из них 40 % — задачи с рассуждениями.Поддерживает контекст до 128 K токенов.Использует новый подход Evo-CoT (Evolutionary Chain-of-Thought) для «поэтапного мышления».В кодовых бенчмарках (mbpp, LiveCodeBench) — уверенно обгоняет GPT-5 и DeepSeek-V3.
Паттерны программирования при работе с LLM
LLM - мощный инструмент, но его эффективность в продакшене зависит не от одного «хитрого промпта», а от всей архитектуры: что мы даём модели, как управляем её рассуждением и как проверяем/обрабатываем результат. В этой статье - компактная карта паттернов, разбитая по этапам конвейера: Input -> Reasoning -> Output.ВведениеСтатей про LLM - вагон, и у всех свои "трюки". Мне не хватало схемы, которая раскладывала бы эти "трюки" по полочкам.
HeroBench: проверяем, как LLM справляются со сложным планированием в виртуальных RPG-мирах
Привет! Меня зовут Петр Анохин, я руковожу группой «Нейрокогнитивные архитектуры» в Институте AIRI. Недавно мы выложили в открытый доступ новый бенчмарк для долгосрочного планирования LLM под названием HeroBench. Основанный на MMORPG‑песочнице для программистов, HeroBench проверяет способность современных моделей обрабатывать комплексный контекст, выполнять декомпозицию задач и формировать детализированные многошаговые планы достижения целей.
Как пригласить виртуального слесаря для ведения ТГ канала?
Это Петрович на Akiman DIYВсем привет! Никогда не видели чтобы слесари были админом канала? Так вот сейчас я вам это и покажу! Его зовут Петрович, он слесарь 8 разряда, ему 40 лет и он приколист :-)
Кейс: разработать квест-мастера на нейронке
Инженерия подсказок, как и все, что связано с нейросетями, для непогруженного человека может показаться чем-то раздутым и незначительным. Нет, ну серьезно. Что трудного попросить ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ сочинить стишок или рассказать популярно что такое "Эпистемологический анархизм". Но на деле все действительно оказывается слишком, слишком, слишком нетривиально. Расскажу на примере пустяковой задачки: "Разработать ИИ-агента квест-мастера, который генерит загадки и отслеживает ее угадываемость".Доп.цель:

